

GANs: Generative Adversarial Networks

> Biswarup Bhattacharya University of Southern California <u>bbhattac@usc.edu</u>

18-Aug-2017 (0x3F)<sub>16</sub>

# About Me

- Bachelors in EE (minor in CS) from IIT Kharagpur, India.
- Currently a 1st year PhD CS student @ USC.
- Bachelors thesis: Applying AI to solve national-level power grid problems.
- Research Intern @ Adobe Research Virtual Assistant for Enterprises.
- Software Engineering @ National Digital Library Member of the first team to build the core backend of India's largest public digital library (Government project). <u>http://ndl.iitkgp.ac.in</u>
- Worked in various projects on deep learning, machine learning, networks (electrical and social), power & control systems and IoT among others.
- <u>https://biswarupb.github.io</u>



# Outline

- Part 1: Definition of GANs
- Part 1: Why GANs?
- Part 1: GAN details
- Part 1: Training GANs
- Part 1: Limitations of GANs
- Part 1: DCGAN
- Part 2: Coding vanilla GANs
- Part 3: AAAI 2017 work: Hand-GAN
- Part 3: NIPS 2016 work: SAD-GAN
- Other work that I have done
- References

These indicate tips and tricks which can be used for actually training GANs.

# Part O: Prerequisites



# Basic assumptions of this talk

Prerequisites

- What is supervised and unsupervised machine learning?
- General idea about deep learning and NNs
- What is a statistical distribution?
- What is a zero sum game?



# Machine Learning

- Supervised: Task of inferring a function from labeled training data. Labelled and a teacher exists. Eg. SVM, decision trees, random forests.
  - Classification
  - Regression
- Unsupervised: Model the underlying structure or distribution in the data in order to learn more about the data. No labels and no teacher.
  - Clustering
  - Association
- Semi-supervised: Problems where you have a large amount of input data (X) and only some of the data is labeled (Y).



# Deep Learning

Application of artificial neural networks (ANNs) to learning tasks that contain more than one hidden layer.





# Statistical Distribution



Normal Distribution



## Zero-sum game

- If one gains, another loses.
- Rock, paper, scissors is an example of a zero-sum game without perfect information. No matter what a person decides, the mathematical probability of winning, drawing, or losing is exactly the same.



# Part 1: GANs



# Definition

- GANs are a class of **artificial intelligence algorithms**
- used in **unsupervised machine learning**
- implemented by a system of **two neural networks contesting** with each other
- in a zero-sum game framework.
- Minimax game based on Nash equilibrium.
- Introduced by Ian Goodfellow (currently at Tesla) et al. in 2014.

# Next frame video prediction



Ground Truth





MSE

Lotter et. al., 2016

# Single image super resolution



Ledig et. al., 2016



# Why GANs?

- To augment data. Eg. generate new images from the existing ImageNet dataset.
- Seems to produce better samples faster.
- GANs are able to infer frames, upscale images better than existing techniques.
- Photorealistic images/reconstruct 3D models. In the extreme case, create photos/movies by itself!
- No Monte Carlo (MCMC) approximations required to train.
- The GAN framework can train any kind of generator net.
- No need to design the model need to obey any kind of factorization.
- Easier to use discrete latent variables.
- Goodfellow has discussed more specific advantages in his <u>Quora answer</u>.



# Generative model

- A model  $P(X; \Theta)$  from which we can draw samples.
- E.g. Gaussian Mixture Model (GMM)



• But GMMs are not complex enough to draw samples of images from it.

# Taxonomy of Generative Models





# Adversarial nets framework

- Generator (G): The **counterfeiter** who is trying to produce real data.
- Discriminator (D): The **cop** who is trying to identify which is the fake data.
- More technically, G tries to "trick" D by generating samples that are hard for D to distinguish from the real data.
- G: trained to maximize the probability of D making a mistake.
- D: trained to estimate the probability that a sample came from data distribution rather than G.

# Conceptual diagram

Latent random variable





# The Generator (G)

- Deterministic mapping from a latent random vector to sample from q(x) ~ p(x).
- Usually a deep neural network (DCGAN).

# The Discriminator (D)

- Parameterised function that tries to distinguish between samples from real images p(x) and generated ones q(x).
- Usually a deep **convolutional** neural network (DCGAN).



Discriminator's ability to recognize generator samples as being fake

Probability

of D(fake)

Probability

of D(real)

z is sampled

from N(0, 1)

fake

# The Objective Function

- Change the objective from min log(1-D(G(z))) to max log(D(G(z))) to avoid saturating gradients early on when G is terrible.
- p<sub>z</sub>(z): Random noise injected to produce stochasticity in a physical system; typically a fixed uniform or normal distribution with some latent dimensionality.
- For G fixed, the optimal discriminator D is:

$$\mathcal{D}^*(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_g(oldsymbol{x})}$$

Because, the function  $a \log(y) + b \log(1-y)$  achieves its maximum in [0, 1] at a/(a+b)

Refer original Goodfellow paper for all original GAN theory with derivations: <u>http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf</u> (NIPS 2014)

# The Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples  $\{z^{(1)}, \ldots, z^{(m)}\}$  from noise prior  $p_g(z)$ .
- Sample minibatch of m examples  $\{x^{(1)}, \ldots, x^{(m)}\}$  from data generating distribution  $p_{\text{data}}(x)$ .
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[ \log D\left( \boldsymbol{x}^{(i)} \right) + \log \left( 1 - D\left( G\left( \boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples  $\{z^{(1)}, \ldots, z^{(m)}\}$  from noise prior  $p_g(z)$ .
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left( 1 - D\left( G\left( \boldsymbol{z}^{(i)} \right) \right) \right).$$

#### end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.



# GAN Training

- 1. Fix generator weights, draw samples from both real world and generated images.
- 2. Train discriminator to distinguish between real world and generated images.
- 3. Fix discriminator weights.
- 4. Sample from generator.
- 5. Backprop error through discriminator to update generator weights.
- Iterate until convergence. It is our hope that the generator gets so good that it is impossible for the discriminator to tell the difference between real and generated images.



# GAN Training

 Training GAN is equivalent to minimizing the Jensen-Shannon divergence (symmetrized and smoothed version of the Kullback-Leibler divergence) between generator and data distributions.

$$ext{JSD}(P \parallel Q) = rac{1}{2} D(P \parallel M) + rac{1}{2} D(Q \parallel M)$$
 where  $M = rac{1}{2} (P + Q)$ 

- Updating the discriminator should make it better at **discriminating** between real images and generated ones.
- Updating the generator makes it better at **fooling** the current discriminator.

# The Learning Process p<sub>D</sub>(data) Data distribution Model distribution $\Lambda\Lambda$ .......... . . . Mixed strategy Poorly fit model After updating D After updating G equilibrium



# The Learning Process





# So what do we get after training?

- D: Trained as an unsupervised "**density estimator**", i.e. a contrast function that gives us a low value for data and higher output for everything else.
  - D develops a good internal representation of the data.
  - Can be used as a **feature extractor for a classifier**, for example.
- G: Parametrizes the complicated surface of real data.
  - Arithmetic on faces in the Z vector space: [man with glasses] [man without glasses] + [woman without glasses] = [woman with glasses].



# Face Arithmetic



Woman with Glasses

Radford et. al., 2015



## Issues

- Hard to train (immature tools for minimax optimization).
- Unstable dynamics: hard to keep generator and discriminator in balance.
   Generator can collapse. Need to babysit during training.
- Optimization can oscillate between solutions. Easy to get trapped in local optima that memorize training data.
- Unclear stopping criteria.
- No explicit representation of  $p_{g}(x)$ .
- No evaluation metric so hard to compare with other models.
- Hard to invert generative model to get back latent z from generated x.

Do read this if you wish to train a GAN: <u>https://github.com/soumith/ganhacks</u>



# Convergence issues

- GANs don't always converge. Especially difficult for large problems.
- A Game Theory paper titled "*Characterization and Computation of Local Nash Equilibria in Continuous Games*" by Ratliff et. al. gives some conditions under which simultaneous gradient descent on two player's costs will converge but GANs never satisfy those conditions because the **Hessian of the generators costs is all zeros at equilibrium**.
- The conditions mentioned however are not *necessary* conditions, thus GANs can converge sometimes.



# **GAN** Variations



 $\begin{array}{ll} \mathsf{GAN, DCGAN:} & \mathcal{L}_{GAN} = \mathbb{E}_{x \sim P_{data}}(\log D(x)) + \mathbb{E}_{z \sim p(z)}(\log D(1 - G(z))) \\ \mathsf{ConGAN, GAN-T2I:} & \mathcal{L} = \mathbb{E}_{x \sim P_{data}}(\log D(x|y)) + \mathbb{E}_{z \sim p(z)}(\log(1 - D(G(z|y)|y))) \\ \mathsf{Info GAN:} & \mathcal{L} = \mathcal{L}_{GAN} + \mathsf{Latent code reconstruction} \\ \mathsf{VAE}/\mathsf{GAN:} & \mathcal{L} = \mathcal{L}_{GAN} + \mathsf{Representation reconstruction} \\ \mathsf{AAE:} & \mathcal{L} = \mathsf{Reconstruction} + \mathcal{L}_{GAN} \\ \end{array}$ 



# DCGAN

- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network (DCGAN).
- Most GANs today are at least loosely based on the DCGAN architecture (Radford et al., 2015).





# DCGAN layers

- Use deep CNN for generator and discriminator instead of MLP.
  - Replace any pooling layers with strided convolution.
  - $\circ$  Use batchnorm in both the generator and the discriminator.
  - Remove fully connected hidden layers for deeper architectures.
  - Uses Tanh for the output (and sigmoid).
  - Use Leaky ReLU in the discriminator and ReLU in the generator.
- Use the trained discriminators for image classification tasks.

# Part 2: Coding vanilla GANs (using tf)

https://github.com/wiseodd/generative-mo dels/blob/master/GAN/vanilla\_gan/gan\_ten sorflow.py



## Imports

```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist
import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
```



# Defining the discriminator weights and biases

- X = tf.placeholder(tf.float32, shape=[None, 784])
- D\_W1 = tf.Variable(xavier\_init([784, 128]))
- D\_b1 = tf.Variable(tf.zeros(shape=[128]))
- D\_W2 = tf.Variable(xavier\_init([128, 1]))
- D\_b2 = tf.Variable(tf.zeros(shape=[1]))

theta\_D =  $[D_W1, D_W2, D_b1, D_b2]$ 



# Defining the generator weights and biases

Z = tf.placeholder(tf.float32, shape=[None, 100])

G\_W1 = tf.Variable(xavier\_init([100, 128]))

G b1 = tf.Variable(tf.zeros(shape=[128]))

G\_W2 = tf.Variable(xavier\_init([128, 784]))

G b2 = tf.Variable(tf.zeros(shape=[784]))

theta\_G = [G\_W1, G\_W2, G\_b1, G\_b2]



# What is Xavier Initialization?



- Initialize the weights in the network by drawing them from a distribution with zero mean and a specific variance (shown above)
  - n<sub>in</sub> is the number of neurons feeding into the neuron
  - $\circ$  n<sub>out</sub> is the number of neurons the result is fed to.
- Glorot & Bengio's paper originally recommended using



- But we don't usually use the original recommendation as:
  - Preserving the forward-propagated signal is much more important.
  - Difficult to find out how many neurons in the next layer consume the output of the current one.



# What is Xavier Initialization?



- It helps signals reach deep into the network.
- If the weights in a network start too small, then the signal shrinks as it passes through each layer until it's too tiny to be useful.
- If the weights in a network start too large, then the signal grows as it passes through each layer until it's too massive to be useful.



Ζ

def sample\_Z(m, n):

return np.random.uniform(-1., 1., size=[m, n])

D

```
def discriminator(x):
```

D\_h1 = tf.nn.relu(tf.matmul(x, D\_W1) + D\_b1)
D\_logit = tf.matmul(D\_h1, D\_W2) + D\_b2
D\_prob = tf.nn.sigmoid(D\_logit)
return D prob, D logit



G

### def generator(z):



# Value definition

G\_sample = generator(Z)
D\_real, D\_logit\_real = discriminator(X)
D\_fake, D\_logit\_fake = discriminator(G\_sample)

# D\_loss = -tf.reduce\_mean(tf.log(D\_real) + tf.log(1. - D\_fake))
# G\_loss = -tf.reduce\_mean(tf.log(D\_fake))



# **Discriminator Loss functions**

D\_loss\_real =

tf.reduce\_mean(tf.nn.sigmoid\_cross\_entropy\_with\_logits(logits=D\_logit \_real, labels=tf.ones\_like(D\_logit\_real)))

D\_loss\_fake =

tf.reduce\_mean(tf.nn.sigmoid\_cross\_entropy\_with\_logits(logits=D\_logit
\_fake, labels=tf.zeros\_like(D\_logit\_fake)))

D\_loss = D\_loss\_real + D\_loss\_fake



# Generator Loss function

 $G_{loss} =$ 

tf.reduce\_mean(tf.nn.sigmoid\_cross\_entropy\_with\_logits(logits
=D\_logit\_fake, labels=tf.ones\_like(D\_logit\_fake)))



# Adam Optimizer

D\_solver = tf.train.AdamOptimizer().minimize(D\_loss, var\_list=theta\_D)

G\_solver = tf.train.AdamOptimizer().minimize(G\_loss, var\_list=theta\_G)



# What is Adam Optimizer?



- Best optimizer currently present. Best replacement for SGD.
- Estimates 1st-order moment (the gradient mean) and 2nd-order moment (element-wise squared gradient) of the gradient using exponential moving average, and corrects its bias.
- Combines the best properties of the AdaGrad and RMSProp algorithms to provide an optimization algorithm that can handle sparse gradients on noisy problems.
- Relatively easy to configure.

Reference: https://arxiv.org/pdf/1412.6980.pdf (ICLR 2015, Kingma & Ba)



# Define sizes & take input

mb size = 128

```
Z_dim = 100
```

```
mnist = input_data.read_data_sets('../MNIST_data',
one_hot=True)
```

Initialize session

sess = tf.Session()

sess.run(tf.global\_variables\_initializer())



### Iterations

for it in range(1000000):

if it % 1000 == 0:

samples = sess.run(G\_sample, feed\_dict={Z: sample\_Z(16, Z\_dim)})
fig = plot(samples)

X\_mb, \_ = mnist.train.next\_batch(mb\_size)

\_, D\_loss\_curr = sess.run([D\_solver, D\_loss], feed\_dict={X: X\_mb, Z: sample\_Z(mb\_size, Z\_dim)})

\_, G\_loss\_curr = sess.run([G\_solver, G\_loss], feed\_dict={Z: sample\_Z(mb\_size, Z\_dim)})



### Results



# Part 3: My AAAI+NIPS work

# AAAI 2017: Handwriting Profiling using GANs (Hand-GAN)

- System tries to learn the handwriting of an entity.
- Generate letter strokes which were not previously seen before.
- Used a modified architecture of DCGAN (Radford, Metz, and Chintala 2015).
- Used Reinforcement Learning to learn spacing, strokes and inflections rewards and penalties to make the generator learn.
- Data: MNIST and survey handwriting.
- Useful for Identification of forged documents, signature verification, computer generated art, digitization of documents.

- To make a controller trainer network using images plus key press data to mimic how a human learns driving.
- Used DCGAN.
- Built a keylogger software to automatically generate datasets by playing RoadRash races. Each race generated around 500 usable images. Played around 200 races!
- Trained the model on one video game (RoadRash) and compared the accuracy by running the model on other maps (GTA etc.) to determine the extent of learning.



#### Generator

- Receives Keypress + Input image at time t + Noise
- Tries to estimate image at t+1

### Discriminator

- Receives generator image and actual t+1 image
- Tries to guess the correct image
- During training, it has created a feature map (classifier)





AlexNet - Inputs: actual images at t and t+1, Output: Key pressed by a human who is expected to drive safely

- G: Train to predict next image given current image and key press.
- D: Distinguish between dataset images and images generated by G.
- After reasonable efficiency is achieved in G, it is used to predict all three images (pressing left, right and up arrow keys) from the given image.
- The three images are classified as "safe" and "unsafe" (by the AlexNet). If "safe", go down the game tree. If "unsafe", choose another option (image).
- The metric for reinforcement learning is set as the maximum number of levels down the game tree the decision yields a safe scene.





# Other interesting GAN research

- **EBGAN**: Energy input instead of probability distributions (2016, Zhao et. al.)
- **Generative Adversarial Metric (GAM)**: Compare performance by judging each generator under the opponent's discriminator. (2016, Im et. al.)
- **GMAN: Generative Multi-Adversarial Networks**. Modifies GAM to evaluate multiple adversaries. (ICLR 2017, Durugkar et. al.)
- So much more interesting stuff done, requires more talks!



# Some fun GAN articles

- Learn GANs with Spongebob! (DCGAN with Tensorflow code): <a href="https://medium.com/@awjuliani/generative-adversarial-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-networks-explai-netwo
- Abuse GANs to make 8-bit pixel art: <u>https://medium.com/@ageitgev/abusing-generative-adversarial-networ</u>

ks-to-make-8-bit-pixel-art-e45d9b96cee7



# **GAN** Conclusion

- Not a magic solution to everything! (yet)
- Concept is relatively easy to understand, but training is a challenge.
- Open questions: Does an equilibrium exist where G wins (D loses)? Is the p<sub>g</sub> really close to p<sub>real</sub> (meaningful generation or simply memorization)?
- GANs are useful mainly for image datasets. It has been especially successful in text to image transformation and synthetic driving applications.
- Game theoretical aspect of GANs has not been explored adequately. https://arxiv.org/pdf/1703.00573.pdf (Paper from Princeton Theory group, Sanjeev Arora et. al., revised August 2017, ICML 2017)



# **Other Selected Research**

- **Contextual Analytics Personal Assistant**: Used Adobe Analytics usage data to model user intent and behavior to generate recommendations and work as a personal assistant to users. 1 US patent pending + 1 research paper.
- Al for electrical power grids: Fault analysis and subset selection for optimal economic dispatch using Al (deep learning) techniques. 2 research papers.
- Location Optimization of ATM networks: Where to place an ATM given demographic information so as to maximize profit and usability. 1 research paper.



# References

1. Robin Ricard:

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/ gans-part1.html

- 2. The NIPS 2014 paper: <u>http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf</u>
- 3. Goodfellow talk: <u>http://www.cs.toronto.edu/~dtarlow/pos14/talks/goodfellow.pdf</u>
- 4. NIPS 2016 tutorial: <u>https://arxiv.org/pdf/1701.00160.pdf</u>
- 5. Kevin McGuinness:

http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D4L1-adversarial.pdf

- 6. GAN and its variations: <u>http://people.ee.duke.edu/~lcarin/Yunchen9.30.2016.pdf</u>
- 7. GAN Foundations:

https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/gan-foundations.pdf



# Thanks!

### Contact me:

SAL 300 USC

bbhattac@usc.edu https://biswarupb.github.io

