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Introduction

Indian Power Grid

© Installed capacity = 229 GW (2013)

© Five regional grids - Northern, Eastern, North Eastern,
Western, Southern

© Monitored via National Load Dispatch Centre (NLDC), 5
RLDCs, 33 SLDCs.

© SCADA /EMS system for visualization.



Introduction

Synchrophasors

© Monitoring the magnitude and angle of each phase of the
three phase voltage/current, frequency, rate of change of
frequency.

© Data collected at every 40 ms interval.

© PMUs (phasor measurement units) provide us with
real-time data.
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Motivation

© Monitor the grid to check vulnerability by understanding
the state of the grid.

© Take preventive measures based on the prognostics.

© Aimed at diversification and distribution of power
irrespective of generator/load fluctuations.

© Should lead to less down-time, better scheduling, lesser
losses for companies. Especially useful for renewable
energy grids.
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Problem Statement

© Current situation in Indian electrical power grids:
Small disturbance noted — generate report — check with
other dispatch centers.

© If the disturbance is found to be local — ignored.

©® Else, if it is found to be correlated (similar disturbances
observed at other dispatch centers) — further diagnostics
are conducted.

© Our goal: Perform this automatically using ML.
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Figure: A typical power grid
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Dataset

Description

Power Grid network: 23 buses, 6 generators, 8 loads

© Each bus has a voltage and angle associated with it.

© Snapshots taken at every 40 ms from 0's to 4 s.
© Initial, transient and steady state data was captured in

this manner.

© 100 simulations done per bus per fault (with different
voltage fluctuations injected using an uniform
distribution).

© Simulated for a total of 4 types of faults: 3¢ bus fault,
branch trip, LL, LG.
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Software

Siemens PSS/E software + psspy

© Simulation software used is Siemens PSS/E.

© This software enables simulation for networks with upto
0.2 million buses.

© Initially tried using PowerWorld but abandoned due to
scripting issues.

© The handy psspy Python package available with PSS/E
enables easy scripting of power system scripts according to
our requirements.



Dataset

Faults: Any abnormal situation in the electric network.

Faults injected and cleared at certain timestamps

© 3¢ bus fault: Symmetrical fault affecting all 3 phases of a

bus equally.

© Branch trip fault: Trips the transmission line (all 3 phases)
between two buses.

© LL (line-to-line) fault: This is an unsymmetrical fault and
it short circuits two phases (in PSS/E, these are phases A
and B).

© LG (line-to-ground) fault: This is an unsymmetrical fault
and it short circuits one phase (in PSS/E, this is Phase A)
with the ground.
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Forecasting maximum voltage deviation

Maximum Voltage Deviation

© The maximum deviation between bus voltages in the
non-faulted scenario and the bus voltages in the faulted
scenario.

© The deviation will be dependent on the load conditions, as
well as transmission capacities of the lines.

© Predicting or having an estimate of possible extents of
voltage deviation will enable us to consider the
“vulnerability” of each bus in the grid.
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Forecasting maximum voltage deviation

Model

© We created a grid as specified previously for simulation
purposes using Siemens PSS/E.

© Data obtained from a 23 bus network corresponding to
different types of faults.

© Neural network model constructed to predict maximum
voltage deviation.

© Input: Vector of size 23 corresponding to pre-fault voltage
data of each bus.

© Output: Forecasted voltage value for each bus.
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Forecasting maximum voltage deviation

Time

Figure: Typical voltage varying plot for a bus line when a fault is
triggered at t = 16 ms. Without fault, the bus voltage should ideally
remain at 1 pu level.
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Forecasting maximum voltage deviation
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Figure: Prediction of max voltage deviation after fault triggering.
Forecasting done simultaneously

Input layer: All bus lines

Hidden layers: 60 and 40 neurons respectively

Output layer: All bus lines
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Forecasting maximum voltage deviation

Results

After 5000 steps of training the following results were obtained:

©® Mean L; error for each bus = 2.8 X 1073 pu
© Mean L; error for each bus = 2.3 x 1072 pu

© These are acceptable levels of accuracy.
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Forecasting maximum voltage deviation
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Figure: Variation of L, error with progress of training
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Classification of faults

Problem

© When a fault occurs in the network, it is difficult to identify
immediately which type of fault has taken place.

© Engineers need to often go to the site to realize the nature
of the fault.

© Using ML techniques, given enough previous data about
faults, we hypothesized that the type of fault could be
predicted.

© We show that ML techniques work by implementing the
classification algorithm in case of LL and LG faults.

© This is important because all faults are not the same. For
example, among the four types we have explored, LG
faults are the most dangerous.
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Classification of faults

Classification into LL and LG faults

© Voltage data corresponding to 100 time steps and for each
bus is fed as input.

© Classifier gives an output corresponding to one of the two
fault classes.
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Classification of faults

Time steps

Figure: Variation of bus voltage value in presence of LL fault
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Classification of faults

Time steps

Figure: Variation of bus voltage value in presence of LG fault
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Classification of faults

- Class 2

Figure: Standard SVM Example



Classification of faults using SVM

Using SVM
© Support vector machines (SVMs) are supervised learning
models used for classification and regression analysis.
© The gap between the classes is kept as wide as possible.

© The classification accuracy on the test set was observed to
be around 87 — 88% for the SVM classifier.
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Classification of faults using SVM
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Figure: Block diagram showing SVM model used for classification
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Classification of faults

Using LSTMs

© It is the variation of voltage with time that tells us as to
what fault had occurred in the network.

© The SVM model had a major disadvantage in the sense that
it did not utilize the temporal information present in the
data.

© To utilize this time varying information we need other
models which are suited to capture the temporal
information.
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Classification of faults using LSTMs

What are LSTMs (recurrent neural networks)?

© The idea behind RNNSs is to make use of sequential
information.

© RNNSs can be thought of as having some memory which
captures information about what has been calculated so far.

© Theoretically they can model long sequences but in
practise they are limited to small steps.
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Classification of faults using LSTMs
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Figure: A recurrent neural network and the unfolding in time
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Classification of faults using LSTMs
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Figure: A basic structure of LSTM.
LSTM which is a variant of RNN is used to take care of long term
dependencies.
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Classification of faults using LSTMs

© Consists of 100 unfoldings in time of LSTM cells.

© Each LSTM cell gets a vector of size 23 (all bus voltages) as
input.

© The output coming out from the final LSTM cell contains
the temporal information of data.

© The information extracted is passed to a classifier for
classification.

© Fully connected hidden layer of 64 neurons.
© The output is of size 2 — probability of the two fault types.
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Classification of faults using LSTMs
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Figure: Model using LSTM for classification of faults
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Classification of faults using LSTMs

Results
With LSTM the classification accuracy jumped to 94 — 95%, an
improvement of around 6% over the SVM model.
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Figure: Variation of training accuracy with progress of training
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Classification of faults using LSTMs
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Figure: Variation of cross entropy loss with training
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Faulted bus line determination

Problem

© Often it is unknown which bus is actually faulted, as a fault
causes a deviation in voltage in many connected buses.

© Immediate identification takes time and often requires
manual supervision.

© Using ML, we can identify the faulted bus line very quickly.
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Faulted bus line determination

Which bus line is faulted?

© Different models were constructed for each of the different
fault types to determine the bus line in which the fault had
been triggered.

© To extract the temporal information from the network data
LSTM was used.

© The extracted information was then fed to a classifier which
gave as a non-zero output corresponding to the faulted bus
number and 0 for buses with no triggered faults.
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Faulted bus line determination

Figure: Blue - Voltage variation with time for the bus line in which
fault was triggered. Red - Voltage variation with time for the bus line
in which no fault was triggered.
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Faulted bus line determination

Results

© For the LL fault the accuracy was 97%.
© For the 3¢ bus fault the accuracy was 97%.
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Figure: Variation of training accuracy with progress of training 39



Faulted bus line determination
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Figure: Variation of training loss with progress of training
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Conclusion

Further Work

© Predicting congestion in the grid was attempted in [2].

© In the renewable energy context, selecting generation
schedules optimally for economic dispatch was also
attempted in [2] with reasonably good results.

© Combining these predictive models, a complete power grid
security tool can be formally built and verified.
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Conclusion

Future Work

© Determination of health metrics which can appropriately
measure the grid vulnerability.

© Yet to be applied on real-world data.
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Final Words

Ultimate aim: To make power grids scalably artificially
intelligent

© Especially useful for renewable energy grids. The Indian
government wants to raise USD 1 trillion to quadruple
current global solar power to 1 terawatt by 2030.

© Issues like load shedding and power cuts can be optimally
handled.

© Building the intelligence for a grid of national scale is
possible with enough data and sophistication to handle
several micro-situations apart from the broad issues.
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