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Abstract—Recommender systems take inputs from user his-
tory, use an internal ranking algorithm to generate results and
possibly optimize this ranking based on feedback. However, often
the recommender system is unaware of the actual intent of the
user and simply provides recommendations dynamically without
properly understanding the thought process of the user. An
intelligent recommender system is not only useful for the user
but also for businesses which want to learn the tendencies of their
users. Finding out tendencies or intents of a user is a difficult
problem to solve.

Keeping this in mind, we sought out to create an intelligent
system which will keep track of the user’s activity on a web-
application as well as determine the intent of the user in each
session. We devised a way to encode the user’s activity through
the sessions. Then, we have represented the information seen
by the user in a high dimensional format which is reduced
to lower dimensions using tensor factorization techniques. The
aspect of intent awareness or intent scoring is dealt with at
this stage. Finally, combining the user activity data with the
contextual information gives the recommendation score. The
final recommendations are then ranked using some filtering
and collaborative recommendation techniques to show the top-k
recommendations to the user. A provision for feedback is also
envisioned in the current system which informs the model to
update the various weights involved in the recommender system
architecture. Our overall model aims to combine both frequency-
based and context-based recommendation systems and quantify
the intent of a user to provide better recommendations.

We ran experiments on real-world timestamped user activity
data, in the setting of recommending reports to the users of a
business analytics tool/application and the results are better than
the baselines. We also tuned certain aspects of our model to arrive
at optimized results.

I. INTRODUCTION

In the business world, showing the advertisement of the
“appropriate” product to the “appropriate” person at the correct
time is the most definite method of attracting customers. This
is the general underlying thought behind digital marketing
solutions which exist in the current ecosystem. Occasionally, it
may be easy to figure out what the user wants but generally it
isn’t that trivial. Therefore, there is a need for an effective
recommendation system which can identify what the user
wants to do and needs to do.

When we talk about what a user wants to do, there are
three questions involved. The first question is: Does the user

like what he is doing? This is probably a harder question
to answer but after analyzing in a web-based situation this
reduces to observing things like the frequency of visits, the
duration spent by the user on a page, the depth of each
visit and so on. Determining the answer to this question at
least for a customized scenario is an essential component
in improving the recommendations for a user so that the
user ultimately starts liking the material shown/suggested to
him and he starts spending more time on the webpage. The
sweet spot in any recommender system algorithm is to get
positive reinforcement which can lead to more revenue for
the businesses involved and greater satisfaction of the user.
Thus, it is a win-win situation for everyone involved. The
second question is: Does the user want to do what he did
the last time? For example, an electronic music listener would
like electronic music recommendations with high probability.
In such situations, we can extrapolate that we can get better
results if we suggest them electronic music soundtracks rather
than rock music. This leads us on to the third question: Does
the user want to do something new that he never did before?
This is a very difficult question to answer and much work
has been done on providing diversification in recommendation
systems to handle problems exactly like this [1]. If we can
identify what is going on in user’s mind then we can design
a “smart” system.

Coming on to the second part of what the user needs to do,
there are certain aspects involved. A user in a business setting
(for eg. an employee using a company’s product) generally
has an objective provided to him by the administration that he
needs to fulfill. Thus, understanding the function of the user
and his requirements is an essential component to designing
a suitable recommendation system. Speaking from a virtual
assistant perspective, if a user is in the sales department of a
company then he will want suggestions related to methods of
improving sales and may not be bothered about getting com-
puter programming suggestions. However, the programming
suggestions may be useful to the technical team who primarily
do not have to bother about the sales issues. Thus, even though
as a company, both of these two suggestions may be of high
relevance to the overall group of “employees of the company”,
we see that our recommender system must understand what
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each user in that company needs to do to provide effective
recommendations.

A simple frequency-based recommender system essentially
remembers the pages visited in the previous sessions by the
user and suggests those pages itself. This is a simple algorithm
but has obvious issues like not taking into account the content
of the page.

An alternate system of recommendations which exists is
a content-based recommendation system. Lots of variations
exist in literature about this [2], [3], [4], [5], [6] however, the
basic idea remains the same i.e. the system essentially tries
to observe the usefulness of a piece of content (or webpage)
to a user and thus recommend it to a user. Usually, there
is some sort of relevance “score” involved which can range
from simple methods like cosine similarity to more complex
algorithms.

The novelty of our work lies in the focus on combining
these two aspects of recommender systems in the hope of
providing better recommendations. We propose an innovative
method of encapsulating the user intent so as to increase the
relevance of the recommendations shown. In complex systems,
there are a vast array of parameters which can be changed,
thus leading to thousands of possible recommendations which
can be suggested to the user. Overall, in this paper, we
suggest a methodology to rank the content and combine this
ranking with historical browsing knowledge to arrive at a
new recommendation score. We conduct experiments on real
data for recommending reports to users to demonstrate the
effectiveness of our approach.

II. RELATED WORK

Firstly, we have a content-based recommendation system
which recommends particular kinds of items to the users.
This consists of the recommendation system used by Net-
flix [7], traditional music recommendation systems [8] and
video recommendation by YouTube [9]. These kinds of rec-
ommendations are driven by the content of the items to
be recommended (i.e. description of the music, movie title,
genre etc.) and a profile of the user’s preference based on
the historical information. A way of combining the global
popularity and the user preference of videos to recommend
the next N videos recommendation on YouTube is described in
[9]. Various methodologies like use of latent factors to model
the relationship between items and users and to determine the
rating of videos by the neighboring videos seen by the user
are discussed in [7].

Other kinds of systems deal with a Markov-model approach.
This consists of models which study item similarity to under-
stand sequential patterns and recommend next set of items
based on the previous set [10]. User’s preference for different
items can be modeled using a Markov chain. Therefore a
transition matrix is estimated that gives the probability of
buying an item based on the previous purchases of the user.
Tensor decomposition methods can be used to promote col-
laborative filtering by combining transition matrices of similar
users. However these models lack the knowledge of contextual

signals from the user. Then, we have context-based recom-
mendation systems. These systems represent context(such as
time, place) either explicitly through various external signals
[11], [12] or implicitly using the technique of exploration and
exploitation [13]. Tensor decomposition methods can be ex-
tended to combine content, context and collaborative filtering
as in [11]. Bandit’s approach can be used to generate context
aware online recommendations. Instead of modeling context
explicitly through external signals, [13] uses user activity or
user feedback to model the context and hence gives the most
suitable recommendation in that context. These systems lack
sequential evolution of the state and they do not consider the
final intent of the user.

Finally, some literature exists on tracking user intent by
analyzing context. Contextual Markov chains [14] and now-
casting models [15] have been studied to track user intent
through the context. However context modeling in these cases
are limited to consumer applications. Context and intent in
enterprise applications have to be dealt with differently and
modeled in a way relevant for the enterprise users.

The motivation behind our work comes from the intent
tracking with sequential evolution as described in [11]. We
have redesigned the algorithm combined with other techniques
to suit our needs.

III. PROBLEM DEFINITION

In this section, we formally define the problem we target to
solve in this paper.

There are certain special business intelligence tasks involved
which require the user to go through the content of multiple
reports to arrive at conclusions. Often, specialized business
intelligence tools are used for this purpose. Thus, the user
has an end goal in mind which is of prime importance to the
recommendation system. We refer to this goal as the intent
of the user which in our scenario is a report. This is a very
difficult task to solve given the current literature. Our system
aims to provide recommendations of this manner where the
system tries to understand the end goal of the user thereby
assisting the user in coming to conclusions faster. This also
helps in reducing human error as the system essentially tries
to understand the quality of the webpage content (which in
the normal case the user tries to utilize manually) and suggest
webpages (reports in our scenerio) accordingly.

Also, in our case, a new user of a tool may be overwhelmed
by the number of features provided by it. There is not much
history involved for a new user so recommendations are not
“correct” or appropriate most of the times. This user’s needs
have to be understood over a certain period of time. Thus,
in this case, a collaborative approach makes sense. There has
been some work done in case of expert recommendations in
literature [16]. Our system utilizes a collaborative/group-based
model to suggest recommendations in order to address this
issue.

In this paper, we aim to solve the following questions:
• Predict user intent which is the end goal or report in our

scenario, from context and frequency



• Determine the relationships between various features in
the content of a webpage

• Determine the right content, data and representation based
on the type and expertise of the user

• Find the most suitable recommendation scoring system
We will propose a model that is able to address the above

questions. We will refer recommendation items as reports and
users as analysts in the paper, but the approach works with
any type of items with parse-able information (e.g. webpages,
products, movies, music etc.).

IV. SYSTEM DESIGN

In this section, we describe our approach in detail. We
first describe the graphical and contextual models that pre-
dict the relevance of items to users (Sections IV-A,B,C,D),
then we describe how we can incorporate these two models
together to generate the recommendations (Section IV-E,F).
Here, items refer to the reports seen by the users. Each report
is a dimension which gives the value of a metric for each
of the dimension elements. Metric is a continuous variable,
dimension is a categorical variable and dimension element is
a value that a dimension takes. For example, for a report “Page
Views” which consists of the page views of individual pages in
a website, the dimension elements can be {“homepage”, “sales
page”, “contacts page”} and so on and the metric for these
elements is “number of views”. Time-series reports capture
the variation of a metric over time for a particular dimension
element while histogram reports consist of histograms of
metrics over different dimension elements. Finally, we briefly
discuss about feedback in this scenario (Section IV-G).

We propose a solution to predicting user intent based upon
current context and combining it with a frequency based
graphical model to provide relevant recommendations to the
user. We have defined the current context as the current report
being looked at by the analyst. Our solution approach has 3
main steps:

1) Modeling browsing patterns through a user navigation
graph (Markov Model) where each node is uniquely
represented.

2) Modeling context of the user as a matrix of context
features versus time and predicting user intent from
latent factors which are obtained from current context.

3) Combining the Markov Model and the intent scores to
give relevant recommendations to the user.

A. User Navigation Graph

The first step of the algorithm is to generate a navigation
graph for each user. We need to learn the reports (webpages)
that each of the users visit so that we can build our set of
reports from which to recommend. We do this by encoding
additional information while building this graph of reports for
every user. This forms the frequency-based recommendation
aspect of our algorithm. The frequency model is illustrated in
Figure 1 and explained below.

A user navigation graph is a weighted directed graph with
each node signifying a unique report seen by the user and each

Fig. 1. Frequency Model using hit data (Section V-A)

directed edge between node u and v signifying that the user
transitioned between node u and v with probability greater
than 0. This user graph can be thought of as a Markov model
since the outgoing transition probabilities for each node sums
up to 1.

B. Determining the Target nodes

The second step of the algorithm is to determine the
target/intent nodes. The motivation behind this is that every
user has some intent in his mind as was discussed before. The
target nodes are denoted by setting the target attribute of the
node to 1. Target nodes refer to the possible candidates for
intent which is the end of analysis or a milestone. The target
nodes were arrived by analyzing the sequences of nodes visited
by the user in a session and using the following heuristics. If
the node in question has in-degree greater than or equal the
mean of the in-degrees of all nodes, then the target attribute
is set to 1. This algorithm has yielded at least 1 target node
even in the smallest of graphs particularly due to the inherent
property of the statistical mean which ensures that at least 1
node will be set as a target.

C. Context Model

The next step of the algorithm is to model the user context.
This forms the basis of the context-based recommendations
as was discussed before. This combined with the frequency
information encoded in the user navigation graph will give
the final recommendation score. This combination is the novel
step which is behind the improvement in performance. Section
V-D gives the evidence of this improvement.

Fig. 2. Building the context tensor



There are mostly two kinds of reports seen by the users: one
is the report in the form of histograms and the another is in the
form of time series. To model context from the current report
(that the user is seeing), we extract some relevant features as
described below. This of course varies from domain to domain
based on implementation.

For each time-series report we extract the following 6
features [17]: aggregate value, maximum and minimum value
of the time series, location of maximum and minimum ob-
servation, longest positive and negative runs, length of time
series & average absolute change in consecutive observation.
These features are calculated for each metric and dimension
element pair. Alternatively, for each histogram report only the
aggregate value as a feature is populated and rest of the 5
values in the vector are set to 0. From all the reports seen by a
given user we form descriptions for building the context vector
in which we specify a place for six different values for all the
reports seen. So at each time instant, the corresponding vector
is populated according to the type of the report. By combining
context vectors at different time instants, the context matrix is
formed for all the users.

The users of the tool are analyzed and clustered into 4
categories depending on their exposure and competence level
of using the tool using k-means clustering algorithm. This
is done for the purpose of group-based recommendations
which is discussed in Section IV-F. The users are categorized
depending upon their usage and amount of activity on the
tool. Activity here implies duration of browsing, number of
redirects, reports seen.

After clustering, the user matrix is combined for users
within a cluster to form the context tensor. For a given user we
have a set of different dimension elements over which metric
is calculated. The cardinality of this set for each metric m is
denoted as dm. We define Du =

∑Mu

m=1 dm where Mu is the
cardinality of the set of all metrics seen by the user. For each
report, we have 6 observable features. Thus the dimension of
the context vector is 6 × Du, which we denote as Nu. We
populate all the 6 values for a time-series report and only the
aggregate value is populated for a histogram report. All the
remaining positions are given a value of zero indicating they
are not present in the current report. The aggregation of many
such context vectors over the number of reports seen form the
context matrix. The dimension of the context matrix is hence
Nu×T , where Nu signifies the context variables which varies
from user to user and T signifies the number of reports seen.
We form the context tensor consisting of context matrices of
U users from the same cluster. The method to generate the
context tensor is illustrated in Figure 2.

For each user we repeat the reports seen, such that the total
number of reports seen is equal to the maximum number of
reports seen by any user. Since the tensor is highly sparse
and the number of context features varies from user to user,
PARAFAC2 tensor decomposition is used to obtain latent
factors for each report seen by the user [15], [18].

1) PARAFAC2 Decomposition: For a three-way tensor i.e.
Nu × T × U , PARAFAC2 decomposition requires only two

out of the three modes (Nu, T and U ) to have uniform
sizes, which in our scenario are the time (T ) and user modes
(U ), while the third mode Nu can be of different sizes.
The decomposition is equivalent to solving the following
optimization problem:

(F̃, Λ̃u)u=1,2,...|U | = min
F,Λu

|U |∑
u=1

||Xu −ΛuF||2F (1)

where F is the Frobenius norm. The latent factor space
dimensionality is R × T . The value of T is discussed above.
The value of R is a constant fixed by us for design purposes.
It is typically a value much smaller than the number of users
(|U |), which leads to the reduction of the dimensionality of the
original context tensor (X). After decomposition, the panel for
the uth user is approximated by

Xu ≈ GuHSuV′ (2)

where Gu ∈ RNu×R is an orthonormal matrix, H ∈ RR×R is
a matrix invariant to u, Su ∈ RR×R is a diagonal matrix and
V ∈ RT×R is the matrix containing the collaborative latent
factors at T time instances. The latent factors are a lower
dimensional representation of reports. For the uth user, the
initially estimated latent factors are

F̃u = F̃ = V′ (3)

and the factor loading matrix is estimated by

Λ̂u = GuHSu (4)

2) Kalman Filter: Kalman Filter is used to enforce the
dynamics and sequential correlations in the latent factors. Let
the a priori and a posteriori latent factors and error covariance
matrices at time step t be f̃t, f̂t, P̃

u
t and P̂u

t , respectively. Au

represents the transition matrix. In the time update (prediction)
step, the a priori factors for the next time step are computed
by

f̃t = Auf̂t−1 + ωut (5)

and the priori error covariance by

P̃u
t = AuP̃u

t−1A
u′

+ Qu (6)

In the measurement update (correction) step, the Kalman gain
Ku
t equals

Ku
t = P̃u

t Λ
u(ΛuP̃u

t Λ
u′

+ Ψu)−1 (7)

where Ψ is the covariance matrix [15]. With the Kalman gain,
the a priori latent factors are corrected by available contextual
signals (missing signals are assigned a very large variance),
and the a posteriori factors equals

f̂t = f̃t + Ku
t (x

u
t − Âf̃t) (8)

The a posteriori error covariance for next time step equals

P̂u
t = (I−Ku

t Λ
u)P̃u

t (9)

I is the identity matrix The value of R was iterated over
multiple values to arrive at optimal values so that latent factors
can be evolved faster [15].



D. Ranking of Latent Factors

To distinguish between the finally evolved latent factors
(using Kalman filtering) with and without intent I for each
user, the pair-wise learning-to-rank method of RankSVM [19]
was used.

Fig. 3. Context Model to get relevance scores

Based on the training data we have the set R1 which
consists of all the latent factors fi such that the user eventually
ends up at target node I in the session. Similarly we have the
set R2 which consists of all the latent factors fj such that the
user does not eventually end up at target node I in the session
i.e. the user reaches a target node other than the intent I.

We define g(I, fi) = 1 if fi belongs to the set R1 otherwise
g(I, fi) = 0 if fi belongs to the set R2. So, this notation
induces a partial ranking of latent factors for intent I such that
fi is preferred over fj for intent I. P is a set as defined below.
P = {(i, j) : fi ∈ R1 and fj ∈ R2}

The objective of the RankSVM is to learn the ranking
function g(I, fi) such that g(I, fi) > g(I, fj) for all fi ∈ R1

and fj ∈ R2. Thus, g(I, fi) can be defined as

g(I, fi) =< ~w, fi > (10)

Following a large margin approach leads us to the optimiza-
tion problem:

min
~w,εij≥0

< ~w, ~w > +λ
∑
ij

εij (11)

s.t. ∀(i, j) ∈ P,< ~w, fi > ≥ < ~w, fj > + 1 − εij , where
λ > 0 determines the trade-off between margin maximization
and error minimization. The latter is the sum of individual
losses εij and constitutes an upper bound on the 0/1-loss of
mistaken preference relations. The constraints enforce < ~w,
fi > is greater than < ~w, fj > whenever possible and penalize
violations thereof. Once optimal ~w has been learned they can
be used to induce ranking of new latent factors for each intent.

From the ranking function we wish to obtain the intent score
(S) such that scores are normalized to be between 0 and 1.
Here, ~w ·~f represents the distance between the training point
and plane separating positive training and negative training
points. The latent factors are normalized to have norm 1.
Now since the RankSVM measures the distance between
the hyperplane and the set of points, the distance value lies
between −4 and 4 (since the difference of latent factors have
norm less than 2 after normalization).

For every test data, we calculate the latent factor (~f ) for the
report seen and take its dot product with the weights for each
intent which finally gives us the intent score (S) , normalized
to be between 0 and 1:

SI(~f) =
(4 + ~wI ·~f)

8
(12)

The method to get the relevance score through the context
model is illustrated in Figure 3.

E. Recommendation Scoring

Fig. 4. The recommendation system with feedback

The next step of the algorithm is to determine the rec-
ommendation scores for the candidate recommendable nodes.
This is the step which puts together frequency-based and
context-based recommendations. According to our hypothesis,
our aim was to prove that combining both of these can actually
improve recommendations.

This step is responsible for finally combining the intent
scores, edge weights (Wuv) and the masses (Mv). The formula
that we are using for scoring recommendation (Kuv) is as
follows:

Kuv = (αv ×Wuv ×Rv) + (βv ×Mv) (13)

The components of the recommendation score are as fol-
lows:
• Wuv: This is the historical probability that the user goes

from current node, u to a recommendable node, v. This



probability information is stored in the graph itself as the
edge weight.

• Rv: This is the relevance score of the recommendable
node, v. This score is essentially a function of the intent
scores and the probabilistic distance from the node v to
the set of target (intent) nodes (the function definitions
Max-IxD and Dot-IxD are discussed in Section V-D).
Using single source Dijkstra shortest path algorithm, we
calculate the distance between the node v and the target
nodes in the graph. In our case as the edge weights of
the graph are not the distance between two nodes but the
probabilities of transition, probabilities are to be multi-
plied when traversing through the graph. Keeping this in
mind, we converted the edge weights to their negative
natural logarithms (as natural logarithm of probabilities
which are values less than 1 give negative values, a
negative sign is added to make the weights positive).
Thus, adding logarithms corresponds to multiplication of
the probabilities. Hence, with this modification, single
source Dijkstra shortest path algorithm was applied to
find these shortest paths. Finally, for the node v, a list of
targets and the probability of reaching those targets from
the node v based on the user’s historical user navigation
graph was calculated.

• Mv: It is the fraction of the total browsing time of the
user that he spent on the node v. The word “mass” is
being used to denote the notion of weighing down i.e. if
the mass of a node is relatively high, the user is weighed
down in that node as he spends more time there compared
to the other nodes.

• αv , βv: These are the feedback factors of node v. These
factors are initialized with 1.0. However, they change on
receiving feedback.

The recommendation scoring technique is illustrated in
Figure 4. The recommendation score is generated for all nodes
v connected to the current node u, as well as for all nodes w
connected to each of the nodes v. Hence, essentially, 1-step and
2-step distanced nodes from u get a score. This calculation is
done for all the user graphs available irrespective of the current
user.

The reasoning behind the formula is henceforth explained.
The Rv gives the true score of the relation between the current
user context and intent. This score incorporates the report data
and other stimuli.

The Rv calculation results in the scoring of the intents
but it does not really deal completely with the actual history
involving the nodes to be recommended. It is more of a score
which assures that from node v a certain set of intents can
be reached or, should be reached (goals or reports which are
required to complete an analysis). However, the past user be-
havior might indicate other tendencies of the users. Historical
analysis might reveal that the user is always interested in
certain kinds of reports which may not always be encoded
by the contextual information. For handling such kind of
cases, multiplying the edge weight with the relevance score
makes logical sense as the edge weight itself can act like a

weighing factor to the relevance score. Thus, a node with high
Rv which a user rarely visits may not be shown as the top
recommendation due to the fact that the user is not likely to
find it useful as per their browsing history. Thus, in most cases,
it is expected that the edge weight as well as relevance should
be positively correlated and the multiplication would not
affect the ordering. However, for cases where the correlation
between the edge weight and the relevance is negative then
the multiplication plays a role in trading off each value with
each other and arriving at a more realistic prediction. Finally
the mass is added as an offset to the recommendation score.
It is generally a small factor which signifies the importance
of a node. In cases where the Rv ×Wuv is similar, the mass
will determine the ranking as the actual time spent by the
user historically must be factored in. In other cases, based on
empirical analysis, the mass does not play a deciding role as
such. However, the mass attribute can be used finally to break
ties if there are any (discussed further in Section V-B).

F. Group-based Recommendations

Apart from recommending reports to a user from that user’s
graph we also recommended reports from other user graphs or
user groups. This step is especially useful for new or novice
users who do not have much personal history with the tool. For
such users, sourcing recommendations from an “experienced”
group is a good idea and it has been shown to work.

First, to identify the users, we selected user groups based
on clusters. For new or inexperienced users, we gave recom-
mendations from clusters which contained more experienced
users. Secondly, after identifying the relevant clusters we
identified the set of users who have the same report/node in
their graph and at least one of the target node. Finally, for the
selected users, we calculated the recommendation score in a
similar manner as we calculated above but with some slight
variations. Intent scores (Rv) are the same as the intent scores
of the original user (the user to whom the recommendations
are shown). Edge weights (Wuv) and mass (Mv) are taken
from the selected users’ (group) graphs. Therefore, the notion
of “distance” as discussed before is also according to those
selected users’ (group) navigation graph.

We calculated recommendation scores only for those nodes
from other users which were not present in the original user
graph i.e. nodes novel to the original users. These recommen-
dation scores are combined with the recommendation scores
of original user to give the final set of recommendations. In the
next section we will see that feedback can be used to inform
the model and provide better recommendations.

G. Feedback

The final step of the algorithm is to gather implicit/explicit
feedback and update the system. Feedback is a very important
requirement in any ranking system as it informs the algorithm
about its own correctness and rectification can be done in the
subsequent calculations. We defined feedback in the following
situations:



• Explicit positive feedback: If a user clicks on one of the
recommendations shown in the list.

• Explicit negative feedback: If a user deletes one of the
recommendations shown in the list.

• Implicit positive feedback: If a user does not click on
any of the recommendations shown in the list, however
navigates to a page which existed in that list. This is
particularly an important piece of information as this
addresses many of the problems existing in today’s
recommendation system. The recommender intelligently
identifies the actions of the user and updates accordingly.

• Implicit negative feedback: If a user does not click on any
of the recommendations shown in the list and navigates to
a page which did not exist in that list. Thus, even though
the user did not delete any recommendation, this can be
taken to be a weak signal of negative feedback.

This leads to a change in the Wuv , Mv , αv and βv values
which were introduced before. The appropriate values can be
updated on the basis of mathematical optimization methods as
well as empirical observations. Also, the updating algorithm
must be slightly different for giving feedback on 2-step nodes
compared to 1-step recommendations. A simulation system is
planned to evaluate the feedback mechanism.

V. EXPERIMENTS

In this section we will showcase the performance improve-
ments of our model compared to baseline models. We will
first describe the dataset, the algorithm setup with respect to
our case and then evaluate our model with other baselines.

We also conduct several case studies to show which recom-
mendation score is the most appropriate.

A. Dataset

We used real-world hit data. A hit corresponds to a report
access. The hit data essentially consisted of time-stamped user
activity tracking. Data was filtered to give relevant information
like timestamp, report requested, URL, metrics seen, and so
on. The data also has information related to the session which
is used to sessionize it for context modeling.

We used 10 days hit-level data. This data is taken across
different companies so the number of users varies depending
upon the company. The number of reports visited by each
user also varies depending upon his tasks. The data contained
information about the user as well as the reports visited by
each user at each timestamp. The data was finally sessionized
to understand and segregate the transitions. We trained our
model on 70% of the data (first 7 days) and tested on the
remaining 30% (last 3 days) data. Further work may be
conducted by using alternative training-testing methods like
interleaved training, increasing the percentage of the training
set, increasing the amount of overall data and so on.

B. Ranking of Recommendations

The recommendations generated using the methodology
described in Section IV are stored along with the information
such as the value of recommendation score, Rv , αv , βv , Mv ,

TABLE I
COMPARISON OF PROPOSED SYSTEM WITH BASELINES & DIFFERENT Rv

Method NDCG Precision Recall w-AUC
Mass 0.4297 0.0885 0.6181 0.5867

Frequency 0.4744 0.0853 0.5866 0.5866
Context Based 0.5228 0.1003 0.6730 0.7226

PARAFAC2 Model 0.5470 0.0987 0.6343 0.6250
Max-IxD 0.4908 0.1006 0.6753 0.6858
Dot-IxD 0.5274 0.1021 0.6911 0.7165
Max-I 0.4736 0.0969 0.6390 0.6555

Sum-I (proposed) 0.5706 0.1006 0.6753 0.7239

Wuv and whether the node is actually the 1-step or 2-step
recommendation. Now, these generated recommendations are
ranked in the following order of preference:

1) Kuv (Descending): This is the recommendation score
obtained by using Equation (13). It is highly unlikely
that two nodes will have the same recommendation
score.

2) Collaborative or not (Preferring the recommendations
got from the current user graph over the recommenda-
tions got from the other user graphs)

3) Rv (Descending): Relevance score (Section IV-E).
4) Wuv (Descending): If a node v is not adjacent to u then

shortest path weight which is the product of probabilities
on the path is taken.

5) Mv (Descending): “Mass” of the node (Section IV-E).

C. Baselines

We tested our model against the baselines described below:
1) Frequency: Recommendation based upon the proba-

bilistic graphical model i.e. based upon edge weights
(Wuv) in the user navigation graph.

2) Mass (Mv): Recommendation based upon the average
time spent on the reports seen.

3) Context: Recommendation based upon intent scores
obtained from the current context of the user.

4) Tensor Factorization: Recommendation based upon
obtaining latent factors only from PARAFAC2 tensor
decomposition (without Kalman Filter regularization).

D. Results

We tested our model on the 4 metrics: NDCG (Normalized
Discounted Cumulative Gain), Precision, Recall and w-AUC
(weighted average Area Under the Curve). The results shown
below are for the users seeing considerable number of unique
reports. The results for performance of our algorithm against
other baselines are summarized in Table 1.

It is seen that the proposed model i.e. the Markov model
with context modeling using PARAFAC2 and Kalman Fil-
tering works better than the other models with respect to
the metrics used. The precision is near 0.1 because we set
an upper limit to the number of recommendations to be
generated to be 10 and for every recommended list, there could
be only 1 correct recommendation as testing was done by
simply checking the immediate next report access. The number



of reports seen/accessible (universe of reports) is a huge
number thus driving down overall results in case of precision.
However, it is clear from comparison that our algorithm indeed
performs better than baselines with respect to each metric.

We have also varied the recommendation scoring formula.
In this case, the general formula structure remains the same as
Eqn. (13), but the method of calculation of Rv changes. The
key for the formulae are as follows:
• Max-IxD: Rv = Maximum of (intent scores * distance

to target node)
• Dot-IxD: Rv = Dot product between intent score and

distances of node to those intents
• Max-I: Rv = Maximum of intent scores
• Sum-I: Rv = Sum of intent scores (proposed)
It is observed that Dot-IxD performs better than other meth-

ods with Precision and Recall. The intuition behind Max-IxD
is to extract the information of the most relevant and visited
nodes among the options. Similarly, the intuition behind Dot-
IxD is to get a single score which captures not only the
maximum but encodes the information of all possible intent
scores and the distances. The proposed model in Table 1 uses
the Rv as described in the Sum-I method. The intuition behind
proposing Sum-I is the fact that it considers the relevance
scores fully without any discount and does not lead to any bias.
As we are already considering the probabilities of reaching
a node through the user navigation graph (Wuv), it is not
necessary to encode the distance information again in Rv .

VI. CONCLUSION

In this paper we have proposed a novel recommendation
system combining a probabilistic graphical model with tensor
factorization and Kalman filtering. Though some steps like
tensor factorization are computationally heavy, they are to
be conducted after long periods (once a day). The updating
of latent factors through Kalman filter is a fast process thus
making the system suitable for usage in real-time. From the
results, we are able to justify our hypothesis that combining
frequency and context-based recommendations should lead to
better results. Further analysis maybe conducted by tuning
the parameters and incorporating the feedback system which
should lead to improved results.
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