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ABSTRACT
Distributing public health services is a major challenge. Health

workers are responsible for spreading awareness about preventable

health problems among the general public by physically visiting

the at-risk individuals. However, a limited number of health work-

ers are often responsible for a large population with a variety of

health problems. It is therefore essential to design an effective pol-

icy to maximize the coverage and spread of health information with

limited resources.

In this paper, we propose a novel hierarchical visitation policy

design, scalable to regions of various sizes and diversities, which

consists of two levels of planning: i) Macro-level planning (region-

level) by adapting the p-functional regions problem (PFRP) to our

setting, and ii) Micro-level planning (village-level) by formulating

a restless multi-armed bandit (RMAB) model and using POMDPs

with Whittle Index Policy. We also consider how to address the

heterogeneity of health problems across villages to ensure better

service delivery and the dynamic nature of public health priorities,

which have not been attempted in previous literature, to the best

of our knowledge. Our preliminary experiments show promising

results which demonstrate the potential of this methodology to be

applied for health policy planning.
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1 INTRODUCTION
In many developing nations, public health workers are responsible

for spreading awareness of health issues in rural areas, usually via

patient visits or through health camps. However, there are very

limited number of health workers: i.e., there is only an average of 1

health worker per 500 individuals in India [5]. Optimal utilization of

these human resources is therefore especially important in raising

awareness about health.

In India, over 70% people live in rural areas, where preventable

illnesses are a major health issue. Across the country, over 70%

of infants are malnourished, infant mortality rate is high, only

15% of mothers receive antenatal care, and mental health issues

are prevalent in the population [22]. Studies in Bihar, a region in

India, found that there remains a vast lack of health awareness

and education in the villages; specifically in the areas of nutrition,

immunization, diseases prevention and treatment, maternity care,

and family planning [7]. Health workers can address these issues

through information dissemination campaigns, which raise aware-

ness about healthy habits, available immunization facilities, health

camps, diagnostic camps, and treatment resources [9]. In this paper,

we focus on this critical public health problem, and propose an

algorithm for conducting optimal information dissemination cam-

paigns both at the regional-level (macro-level) and the village-level

(micro-level).

Currently, the Indian health system is organized into regional

health centers, each with multiple villages in its jurisdiction. We re-

district these centers in a novel way to improve authorities’ abilities

to provide oversight, manage logistics, and monitor regional health

status, which in turn leads to better resource utilization. This macro-

level planning can be repeated every few years as demographics

shift over time.

It is also important to look at the dynamics of individual villages

to provide regular targeted support. We model this visitation prob-

lem of health workers visiting villages as a restless multi-armed

bandit problem (RMAB) to distribute k health workers to n villages,

and plan the visits using POMDPs. Using the Whittle Index policy,

we find the optimal actions for health workers in every round to

maximize coverage and information spread. We consider how to

match health workers with medical specialties to the specific health

needs of each village while determining this visitation policy. This

has not been attempted in the previous literature.

We evaluated our model using publicly available Indian Census

data. Remarkably, using this algorithm, we estimate that there is

potential for health workers to reach over a hundred thousand

vulnerable people who would otherwise have never been visited

given the current lack of availability of decision aids to assist in

village visitation.

https://doi.org/10.1145/3209811.3209865
https://doi.org/10.1145/3209811.3209865
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2 MACRO-LEVEL PLANNING: DISTRICTING
LARGE REGIONS

The first step in our policy design is breaking down large regions

into smaller manageable regions, or “public health districts”. This

districting can work in parallel with the existing administrative

divisions in a country. This enables multiple authorities to have a

stake in a single public health district, leading to better expected

outcomes. All activities in the region can be monitored from a

functional center, called the district headquarters.

2.1 Model
Our districting model is heavily inspired by the p-functional Regions
Problem (PFRP) described in geographical journal literature [4, 13].

We define a functional region to be a region where there is an

agglomeration of public health services at a regional center that

focuses on providing maximum support to people in the surround-

ing regions [1]. Formally, the PFRP problem is the identification

of a set of p groups that are aggregated into n areal units (public

health districts) while optimizing a predefined objective function

with a given set of criteria or constraints. The objective function

can be formulated to minimize the dissimilarity of areal units or, in

our case, to maximize their similarity in public health issues facing

each areal unit. In our case, the smallest areal or spatial unit is a

village (or a town).

2.2 Optimization Problem
Each of then villages (basic spatial units) is denoted by i ∈ {1, . . . ,n}.
Index k denotes a village selected as a functional center of the re-

gion. The total number of regions to be districted is p. The set Ni
denotes the set of villages adjacent to village i . The following de-
cision variables are used in this model: xik (whether village i is
included in region k), sik (whether village i is chosen as a sink of

region k), and fi jk (the amount of unit flow from village i to village
j in region k).

Finally, cik indicates the magnitude of the actual health-related

interactions between the individual villages and the regional cen-

ters, such as commuting to clinics and hospitals, to determine

the functional regions, whereas fi jk denotes the conceptual flows

(health-related movement) between basic villages in a contiguous

region. Based on this notation and the corresponding decision vari-

ables, the PFRP is modeled as follows:

Maximize

∑
k

∑
i
cikxik (1)

Subject to: ∑
k

xik = 1,∀i, (2)

sik ≤ xik ,∀i,k, (3)∑
i
sik ≤ 1,∀k, (4)∑

k

∑
i
sik = p, (5)

fi jk ≤ xik (n − p),∀i, j ∈ Ni ,k, (6)

fi jk ≤ x jk (n − p),∀i, j ∈ Ni ,k, (7)

∑
j ∈Ni

fi jk −
∑
j ∈Ni

fjik ≥ xik − (n − p)sik ,∀i,k, (8)

xik = {0, 1},∀i,k, (9)

sik = {0, 1},∀i,k, (10)

fi jk ≥ 0,∀i, j ∈ Ni ,k, (11)

xi j = 0,∀i, j ∈ Q, (12)

si j = 0,∀i, j ∈ Q, (13)

xii = 0,∀i ∈ M, (14)

sii = 0,∀i ∈ M . (15)

The objective function (1) maximizes the interactions between

the villages and the functional center within a region. The PFRP

determines the functional centers and delineates their sphere of

influence simultaneously. Constraint (2) ensures that every village

i is in only one region k , and constraint (3) ensures that village i
can be a sink in a region k only when it is assigned to the same

region. Constraints (4) and (5) restrict the number of regions to p
by stating that there can be only one sink in each region, with the

total number of sinks being p (p < n). Constraints (6) and (7) ensure
that unit flows can exist only between two adjacent villages in the

same region. Constraint (8) establishes the contiguity requirement

for regionalization — if a village is not a sink, it must contribute

at least one unit flow; and if a village is a sink, then it can have a

nonnegative net flow up to n−p−1 (largest number of villages that

can be assigned to a region). Constraints (9), (10) and (11) impose

integer and non-negativity restrictions on the decision variables.

Constraints (12)-(15) are introduced by the ATR method. The

PFRP method does not scale well to larger maps, therefore the

analytical target reduction (ATR) method is applied. It utilizes the

fact that one can search for the optimal p by going q steps at a time,

by considering the solution at level p + q (thus, q is defined to be

the ATR step size, 1 ≤ q ≤ p − 1 < n). As described in [13], ATR

proceeds by the following steps. Initially, the p = (n − q) case is
solved. We can start with all the basic areal units (villages) as the

potential seeds or we can start at an intermediate level of p, i.e.,
with a high q value. Then, unselected villages are added to Q , and
the constraints (12) and (13) restrict these villages to be centers and

sinks for the next ATR case. Also, it is observed that some villages

are repeatedly chosen as functional centers regardless of the p level

because of the substantial level of activity (interactions with other

units) and we denote these villages asM . A village with dominant

inflows from other units can be regarded as a functional center.

Thus, applying constraints (14) and (15) allows the solution space

can be reduced and the computational efficiency to be improved by

considering one or two villages as centers regardless of the p level.

It must be noted that functional centers may not be identical

to sinks. The functional center of a region is selected such that it

maximizes spatial interactions from other villages i within a region

k . It can intuitively mean a village with a good hospital or health

center (e.g. a government hospital) where geographical flows from

other centers are highly concentrated.
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Figure 1: Complete Model

3 MICRO-LEVEL PLANNING: VILLAGE
VISITATION

After determining the regions and the grouping of the villages,

regular planning of visits by the health workers to the villages is

required so that targeted health services can be distributed. Here,

the “health worker” term is a proxy for not only actual individual

health workers but also health units and health camps set up by

teams of public health workers. Henceforth, the term “health agent”

will be used to signify a unit of public health resource (individual

health workers, camps, mobile units etc.).

We are considering that each “health agent” specializes in certain

health procedures and have general non-specialized expertise in

disseminating other health information. We also consider that not

all villages have the same problems to the same degree. When a

village is not visited for a long time, the health situation deterio-

rates. When a visit is made, even then the health agents do not have

perfect information about the health situation and can only make

approximate observations given the large number of households

in every village. Thus, the question becomes whether to visit new

villages for unknown rewards or to keep visiting already visited vil-

lages. Simultaneous consideration of health deterioration, medical

specialization, and uncertain village needs have not been attempted

in previous work, to the best of our knowledge.

We model this problem as a restless multi-armed bandit problem

and use the Whittle index policy to identify the optimal strategy.

The modeling is heavily inspired by similar strategies applied in

wildlife conservation domains, especially in patrol planning of

defenders against poachers [6, 19, 26].

3.1 Formal Model & Setup
For every health problem Hi , the problem is to select k out of n
villages to visit. The objective is to maximize coverage of affected

people and and provide the required help at the correct locations.

The variables are denoted as follows. Let all the health problems

be denoted by H = {H1, . . . ,Hh }. There are a total ofW health

agents with kHi agents for each Hi type of health problem, where

kHi < n.
Each village has an associated hidden health problem intensity

SHi ∈ {0, 1, . . . ,ns − 1} (higher SHi implies higher prevalence of

that health problem in the village). However, the health agents

observe these intensities according to OHi ∈ {0, 1, . . . ,no − 1}.
Note that health agents will make an observation of all health
problems in a village being visited, but will not be able to make

any observation of a village not visited. Thus for every village, the

observation is a vector of h elements pertaining to a value from

each of OHi for all i of that village.
When a village is visited by a health agent of “type” Hd , the

hidden health problem magnitude SHd transitions according to a

ns × ns transition matrix T 1,Hd . However, the other hidden health

problem magnitudes (SHi∀i ∈ {1, . . . ,h} \ {d}) in the same visited

village transitions according to ans ×ns transition matrixT 1,Hi ,дen
.

If the village is not visited, the hidden health problem magnitude

transitions according to a ns × ns transition matrix T 0,Hi
. The

distinction in transition matrices arises from the fact that when a

visit is made by a health agent of “type” Hi , they will be able to

work on problem Hi more effectively than the other problems. The

“gen” matrices are relevant only in case of visited cases; in case of

no visit, all health problems deteriorate according to their natural

rate. Each health problem has different rates of growth and spread

leading to different transition matrices for all health problems. T 1

tends to reduce magnitudes of health problems and T 0
tends to

increase these magnitudes.

The health agents not only make observations while visiting

a village but also receive rewards for performing activities like

immunization, campaigning, etc. We define the reward function∑h
i=1 R(oi ),oi ∈ OHi - larger oi leads to higher reward R(oi ), as the
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reward is dependent on the observation made. Note that health

agents get h rewards for observing all the h health problems only

in the visited village.

In summary, when a health agent of “type”Hd visit a village, she

makes an observation regarding every health problem h depending

on the current hidden health problemmagnitude in that village, gets

the reward associated with the observation, and then the hidden

health problem magnitude of Hd transitions according to T 1,Hd

and rest of the hidden problem magnitudes Hi , ∀i ∈ {1, . . . ,h} \
{d} transition according to T 1,Hi ,дen

; for the villages the health

agents do not visit, they do not have any observation, get reward 0,

and the hidden health problem magnitude transitions according to

T 0,Hi , ∀i (Figure 1).
While the state discretization level ns , observation discretization

level no and reward function R(o) are pre-specified by the public

health administration, the transition matrices T 1,Hi
and T 0,Hi

, and

initial belief can be learned from previous health reports.

4 VISITS BY RESTLESS BANDITS
In the multi-armed bandit problem, there are n arms out of which

k arms need to be activated at every round. Each arm represents

an independent Markov machine. The states of the active arms

transition after every round, while the passive arms remain in the

same state as before. However, in RMABs, the passive arms also

transition at every round. It is PSPACE-hard to find the optimal

strategy to general RMABs [17], therefore index policies are used

which assigns a value to each arm to measure how rewarding it

is to activate an arm at every stage. In literature, Whittle index

is used for RMABs [24]. Whittle Index is based on the concept of

providing enough subsidy to every arm which would make passive

action optimal for the current state. Whittle index policy chooses

to activate the k arms with the highest Whittle indices. Larger

m implies larger gap between active action (activate) and passive

action, and therefore it is more attractive the player to activate this

arm. Formally, letVm (x ;a = 0) be the maximum cumulative reward

the player can achieve until the end if he takes passive action at

the first round at the state x with subsidym, and Vm (x ;a = 1) be
the maximum cumulative reward the player can achieve until the

end if he takes active action at the first round at the state x with

subsidym. Whittle index I (x) of state x is then defined to be:

I (x) ≜ inf

m
{m : Vm (x ;a = 0) ≥ Vm (x ;a = 1)}

An arm is indexable if ϕ(m) monotonically increases from ∅ to

the whole state space asm increases from −∞ to +∞. An RMAB is

indexable if every arm is indexable. Here, ϕ(m) is the set of states
for which passive action is optimal given subsidym.

4.1 Restless Bandit Formulation
The health agents do not have perfect knowledge of the health state

of every village, hence they maintain a belief bHi of each possible

state of every possible health problem (Hi ) in every village, based

on which decisions are taken. The belief update occurs by Bayesian

rules. The updated belief state for every health problemHi is hereby

described when the health agents visit a village (a = 1), or do not

visit a village (a = 0). When the health agent who visits the village

is of “type” Hd , the belief update performed is as follows (where

d ∈ {1, . . . ,h}):

b
′
Hi
(s ′) =


η1

∑
s ∈SHi bHi (s) O

Hi
so T 1,Hi

ss ′ , a = 1, i = d

η2
∑
s ∈SHi bHi (s) O

Hi
so T

1,Hi ,дen
ss ′ , a = 1, i , d∑

s ∈SHi bHi (s) T
0,Hi
ss ′ , a = 0.

(16)

where η1,η2 are the normalization factors. The belief update is

intuitive — when a visit is made (a = 1), the belief first updates

according to the observation made and then the transition happens

according to T 1,Hi
or T 1,Hi ,дen

using the logic as described previ-

ously; and when a visit is not made, there is no observation, and the

transition happens according toT 0,Hi
. The following mathematical

relations, pertaining to theWhittle index policy, can now be written

for our problem (here i ∈ {1, . . . ,h}):
Vm (bHi ;a = 0) =m + βVm (bHi ,a=0) (17)

Vm (bHi ;a = 1) =
∑

s ∈SHi

bHi (s)
h∑
i=1

∑
o∈OHi

OHi
so R(o)

+ β
∑

o∈OHi

∑
s ∈SHi

bHi (s) O
Hi
so Vm (boHi ,a=1)

(18)

Vm (bHi ) = max{Vm (bHi ;a = 0),Vm (bHi ;a = 1)} (19)

I (bHi ) ≜ inf

m
{m : Vm (bHi ;a = 0) ≥ Vm (bHi ;a = 1)} (20)

ϕHi (m) ≜ {bHi : Vm (bHi ;a = 0) ≥ Vm (bHi ;a = 1)} (21)

Equation 17 specifies that when a village is not visited, the im-

mediate reward received is the subsidy and there is a β-discounted
future reward. The value functionVm (bHi ,a=0) is updated from bHi

using the case a = 0 in Equation 16. Equation 18 specifies that when

a village is visited, health agents get the expected immediate reward

(first term) and there is a β-discounted future reward. Vm (boHi ,a=1
)

is the value function at new belief boHi ,a=1
that is updated from

bHi according to Equation 16, case a = 1 with observation o. Equa-
tion 19 is the final value function. Equation 20 specifies the Whittle

Index for belief bHi and Equation 21 specifies the passive action set

ϕHi (m), which is the set of belief states for which passive action

(“not visit”) is the optimal action given subsidym.

4.2 Numerical Evaluation of Whittle Index
One can prove sufficient conditions for indexability, however due

to the already existing rich literature on indexability proofs for

RMABs [8, 14–16], it is skipped in this paper. For other problems,

we numerically evaluate their indexability.

Proposition 1. If m < hR(0) − βh R(no−1)−R(0)
1−β , ϕ(m) = ∅; if

m > hR(no − 1), ϕ(m) is the whole belief space.

Proof. Ifm < hR(0)−βh R(no−1)−R(0)
1−β , letVm (b;a = 0) =m+βP

andVm (b;a = 1) = ∑h
i=1 R(oi )+βQ . In theworst case, P ≤ hR(no−1)

1−β
by getting hR(no − 1) reward in every round; similarly Q ≥ hR(0)

1−β
by getting hR(0) reward in every round.

∑h
i=1 R(oi ) ≥ hR(0), hence

we get Vm (b;a = 1) −Vm (b;a = 0) = ∑h
i=1 R(oi ) −m + β(Q − P) ≥

hR(0) −m + βh R(no−1)−R(0)
1−β > 0. Thus, being active is always the

optimal action for any state so that ϕ(m) = ∅.
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If m > hR(no − 1), then the strategy of always being passive

dominates other strategies so ϕ(m) is the whole belief state space.
□

It can also be proven that ϕ(m) increases monotonically for

m ⊆ [hR(0) − βh R(no−1)−R(0)
1−β ,hR(no − 1)]. Therefore the RMAB

is indexable form in this particular range as specified by the defini-

tion of indexability. Given the subsidym, ϕ(m) can be determined

by solving a POMDP model. Given the indexability, the Whittle

Index can be found by simply doing a search within the range

m ⊆ [hR(0)−βh R(no−1)−R(0)
1−β ,hR(no−1)], described in detail in [19].

4.3 Planning with POMDPs
The passive action set ϕ(m) is computed using a POMDP model

whose conditional observation probability is dependent on the start

state and action, unlike in standard POMDPs where the conditional

observation probability is dependent on end state and action [12]

(Figure 2).

a

state

observation o

s s′

a

s s′

o

P (s′ | s, a)

P (o | s, a)

P (s′ | s, a)

P (o | s′, a)

Figure 2: Special POMDP (left) v/s Standard POMDP (right)

Every single health problem Hy in every village is modeled as a

POMDP model. The POMDP is formulated as follows:

• State space: The state space is a vector S = {SH1
, . . . , SHh },

where the space for each of SHy is {0, 1, . . . ,ns − 1}.

• Action space: The action space is A = {0, 1}, where a = 0

represents passive action (do not visit) and a = 1 represents

active action (visit).

• Observation space: The observation space is a vector

O = {OH1
, . . . ,OHh }, where the space for each of OHy

is {−1, 0, 1, . . . ,no − 1}. The o = −1,o ∈ OHy is used to

represent no observation when taking action a = 0. When

health agents take action a = 1, they may make observations

OHy \ {−1}.

• Conditional transition probability: The conditional tran-
sition probability is as follows, when a = 1 implies a health

agent of “type” Hd visits the village.

P(s ′Hy
| sHy ,a) =

P(s ′Hy
= j | sHy = i,a = 1,y = d) = T 1,Hy

i j

P(s ′Hy
= j | sHy = i,a = 1,y , d) = T 1,Hy,дen

i j

P(s ′Hy
= j | sHy = i,a = 0,y ∈ {1, . . . ,h}) = T 0,Hy

i j .

• Conditional observation probability:

P(oHy | sHy ,a) ={
P(oHy = j | sHy = i,a = 1) = OHy

i j ,

P(oHy = −1 | sHy ,a = 0) = 1, ∀s ∈ SHy .

• Reward function:

R(sHy , s
′
Hy
,a,oHy ) =

{
0, a = 0,∑h
y=1 R(oHy ), a = 1.

The computation of R(sHy ,a) is done as follows:

R(sHy ,a) =
∑

s ′∈SHi

P(s ′Hy
| sHy ,a) ×

h∑
i=1

∑
o∈OHi

P(oHy | sHy ,a) R(sHy , s
′
Hy
,a,oHy )

For value iteration, the belief update equation is slightly different

from standard POMDPs [19].

4.4 Complete POMDP
We can combine the POMDP models of every village to form a

full POMDP model which describes our problem. Such h complete

POMDPs can be created to consider all the health problems.

• State space: S = S1×S2×· · ·×Sn . Denote s = (s1, s2, . . . , sn ).
• Action space: A = {(a1,a2, . . . ,an ) | aj ∈ {0, 1},∀j ∈
N,

∑
j ∈N a

j = k} (as there are only k health agents of type

Hi . Denote a = (a1,a2, . . . ,an ).
• Observation space: O = O1 × O2 × · · · × On

. Denote o =
(o1,o2, . . . ,on ).

• Conditional transition probability: The probability is

P(s ′ | s,a) =∏
j ∈N P

j (s ′j | s j ,aj ).
• Conditional observation probability: The probability is

P(o | s,a) =∏
j ∈N P

j (oj | s j ,aj ).
• Reward function: R(s, s ′,a,o) = ∑

j ∈N R(s j , s ′j ,aj ,oj ).

5 EMERGENCY INTERVENTION STRATEGY
A “warning score” Si for every village which signifies the overall

health situation of a village can be maintained. It is calculated

based on the current beliefs of every state (bi,Hj (s)) of every health

problem Hj in village i .

Si =
h∑
j=1

∑
s ∈SiHj

sbi,Hj (s)

If the Si goes above a threshold, it is an indication to the authori-

ties that more comprehensive health measures need to taken in that

village, and it may be required to send health agents of multiple

specialties. The maximum possible value of Si = h(ns − 1), and
that occurs when every health problem has reached the maximum

intensity (catastrophic levels) in that village. This score can be uti-

lized to notify village-level or region-level health emergencies or

epidemics.
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6 EXPERIMENTAL EVALUATION
We consider a state in India — Bihar, one of the most disadvantaged

states in terms of the health situation and health delivery systems.

Bihar consists of 38 districts and around 45000 revenue villages with

a total rural population of 91 million people. We consider a region

of 30 villages (population 60,000) in one of the districts in Bihar —

Arwal (population 700,000) for our experimental evaluation. The

types of health agents working in this district include Accredited

Social Health Activists (ASHAs), Auxiliary NurseMidwives (ANMs),

among others. Due to lack of exact data about the number of health

workers in Arwal, we estimate from statistics [20] that this district is

served by roughly 1 health worker per 1700 individuals. There are 5

Primary Health Centres and 65 Health Subcentres in Arwal. These

coordinate the activities of the health agents. The major health

problems in this district include lack of infant care and ante-natal

care, malaria, TB, and leprosy.

We use demographic data from the Indian Census 2011 [10]. The

data available includes information on population demographics,

literacy, working class information, etc., at the village level. Villages

close to each other generally face similar health problems due to

similarity in demographics and development. So, we can segregate

the large region into sub-regions which will enable better planning

as we will have better estimation of the problems in sub-regions

than in the whole region. Once these new “public health districts”

are created, health agents can be deployed sub-region by sub-region.

We combined the population demographics and working class

information as inputs to the optimization problem presented in

macro-planning. Taking each village as the smallest spatial unit,

we run the algorithm and identify the functional centers and the

number of “public health districts” formed. Given the available

data, we took the population in every village as the indicator for

activity. As public health is a resource utilized by all people of

all ages, population is a reasonable proxy given no other suitable

alternatives.

(a) p = 5 (b) p = 6

(c) p = 7 (d) p = 8

Figure 3: Illustration of optimal districting of 30 villages
for different number of regions (p-regions)

Figure 3 shows the optimal solutions of a region consisting of 30

villages for p = 5 to 8. The lines in the figure demarcate the villages

purely for ease of illustration. The black dots are the village centers.

The colors display the regions formed, and the diamonds are the

functional centers selected after optimization. It is observed that

the administrative seats are matching with functional centers. It

is interesting to note that having a fully-functioning government

hospital can indicate higher chance of the village being set as a

sink. It is clear that with even more appropriate features and data,

this districting can be done with higher accuracy. The authorities

do have access to such data but we do not, hence we can expect

that in the real world this algorithm will perform better than our

simulation.

Thus, for framing the visitation policy, we say that these colored

regions are the “public health districts” in this region and a central

health center needs to be active at each of the functional centers.

Health workers can be posted to these functional centers, where

micro-level planningwill be conducted to plan the visitation policies

for each of these health workers to visit every village as and when

necessary. The optimization can be run hierarchically to further

divide districts and so on, till the desired level of regionalization is

achieved. We notice in our model simulated with real data that the

number of villages in each region is approximately 5 to 6 which

implies that it is ideal if micro-level planning is conducted in batches

of 5 to 6 villages.

The micro-level planning performance is evaluated in terms of

the cumulative reward achieved within the first 30 rounds (β = 0.9).

All results are averaged over 1000 simulation runs.

6.1 Evaluation of Whittle Index Policy
We will compare the Whittle Index policy (WI) with the following

baselines:

(1) Random: Randomly allocate k health agents of a certain

“type” in every round.

(2) Myopic: Allocate k health agents of a certain “type” to the

villages with the highest immediate reward in every round.

(3) Exact POMDP (POMDP): Plan using the exact POMDP

model discussed. The exact algorithm used for value iteration

is the incremental pruning algorithm [2].

(4) POMCP: Plan using the POMCP algorithm to solve the exact

POMDP model discussed. POMCP algorithm uses a parti-

cle filter to maintain an approximation of the belief state

and uses MCTS to simulate the next step to find the best

action [21]. It is especially useful when POMDP becomes

infeasible to solve for large state spaces.

Table 1: Solution Quality for small-scale problem:
n = 2,k = 1,h = 2,ns = no = 2

Random Myopic POMCP POMDP WI

3.280 3.521 3.590 3.717 3.695

The solution quality values in Table 1 indicate rewards obtained,

roughly translating to, in the real world, number of individuals pos-

itively affected by the health workers. As expected, exact POMDP



Restless Bandits visiting Villages COMPASS ’18, June 20–22, 2018, Menlo Park and San Jose, CA, USA

provides the highest solution quality. However, Whittle Index pol-

icy performs reasonably well — comparable to exact POMDP in

this case and much better than POMCP or Myopic. It must be noted

that although exact POMDP provides the best solution quality, it is

not scalable.

Table 2: Evaluation for n = 5,h = 2,ns = no = 2, varying k

k Random Myopic POMCP WI

1 7.441 10.512 11.810 12.124

2 10.431 14.030 15.281 16.425

3 14.129 18.459 18.780 19.294

From Table 2, it is clear that with the increase in number of

health agents, the cumulative reward increases, with Whittle Index

policy performing very well in finding rewarding strategies.

Table 3: Evaluation for n = 5,h = 3,ns = no = 2, varying k

k Random Myopic POMCP WI

1 10.441 16.002 18.111 19.356

2 15.006 20.141 22.164 23.379

3 21.463 23.988 25.665 26.414

Table 3 shows the same problem with an added health problem.

The cumulative rewards increase as a whole due to the additional

observations being made about the added health problem. It was

noted that after implementing macro-planning, the number of vil-

lages in the problem reduced (to subproblems) thereby giving a

boost in performance.

It is important to understand the consequences of the results ob-

tained. The reward function is a function of the observations which

are related to the intensities of the health problems. The highest

number in the observed intensity scale (no − 1) indicates that the

majority of the people in the village suffers from the problem. Using

the Census data, we can understand the significance of the results

obtained. The average population of a village in India is around

2000 [10]. The results in Table 2 show a cumulative reward of 26.414

for WI which roughly translates to the expected number of people

reached to around 1750, whereas a reward of 23.988 for Myopic

translates to around 1600 people reached. Scaling this to a large

region of 30 villages, for example, as in the macro-level planning

experiment, corresponds to WI policy reaching approximately 1000

more people, who would otherwise have never been reached. On

a national scale, this number can potentially translate to at least

hundreds of thousands of people reached due to the Whittle Index

policy, as there are over 500,000 villages in India.

6.2 Evaluation of RMAB Model
The RMAB model was compared with other existing algorithms —

UCB, EXP3, and SWUCB. The performance is evaluated in terms of

the cumulative reward achieved within the first 30 rounds (β = 0.9)

after multiple learning rounds.

Table 4: RMAB evaluation & comparison for varying
learning rounds (LR) for ns = no = 2

LR Random EXP3 SWUCB UCB RMAB

500 4.411 5.334 5.500 6.271 6.534

1000 4.421 5.536 5.742 6.534 6.849

1500 4.417 5.711 5.818 6.669 7.110

The superior performance of RMAB becomes even more pro-

nounced as the number of learning rounds increases as illustrated

in Table 4.

7 RELATEDWORK
Population health planning and region-based planning has been

explored previously in healthcare literature. [11] notes that region-

alization is supposed to have facilitated a better alignment between

the allocation of healthcare resources and population health needs.

In our approach, informed regionalization is taking place during

macro-planning, which should improve the results when applied

in the real world.

Restless multi-armed bandits (RMAB) is a well-studied model in

literature. However, to the best of our knowledge, the RMAB model

has previously never been attempted to be used in the public health

domain. However, bandit theory has been explored previously in

medical literature. In [25] and [18], they propose bandit-based de-

signs for attempting clinical trials. Optimal design of clinical trials

was attempted using RMABs and Whittle Index Policy in [23].

Planning visitation in villages can be thought of to be similar

to multi-agent patrolling policies which have been researched pre-

viously. In [19], they plan patrols using RMAB in forests to tackle

poachers. However, our work deals with public health and the

complexity of our problem is much larger due to the variety of

health problems which can exist even at one location. The concept

is similar, but the detailed settings are different. We also propose a

hierarchical model, which is especially relevant in the domain of

public health. In [3], they consider the problem of patrolling under

uncertainty and threats by solving a single-agent POMDP model.

8 CONCLUSION
We have presented a hierarchical model — PFRP method for macro-

planning and a RMAB approach with Whittle Index Policy for

micro-level planning. Even though the results obtained are only

after preliminary analysis, we believe similar approaches can be

adopted by health administrations for planning health policies in

the future. It is important to test and fine-tune this algorithm on

real world data, and it is possible that there can be multiple types

of complications due to the diversity of the real world.
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