Introduction O	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion

Restless Bandits visiting Villages: A Preliminary Study on distributing Public Health Services

Biswarup Bhattacharya

University of Southern California

bbhattac@usc.edu

June 20, 2018

ACM COMPASS 2018

Introduction O	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Overview				

- Macro-level Planning
 Optimization Problem
- 3 Micro-level Planning
 - Model
 - RMABs & Whittle Index
 - Planning with POMDPs

4 Experiments

- Data
- Macro-level Planning
- Micro-level Planning

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Introductio	on			

Distribution of public health services is a major challenge.

 $\bullet\,$ Health workers \to spreading awareness of health issues.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Introductio	on			

Distribution of public health services is a major challenge.

- \bullet Health workers \rightarrow spreading awareness of health issues.
- A problem of limited resources: There is only an average of 1 health worker per 500 individuals in India [Fan and Anand, 2016].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Introductio	on .			

Distribution of public health services is a major challenge.

- $\bullet\,$ Health workers \rightarrow spreading awareness of health issues.
- A problem of limited resources: There is only an average of 1 health worker per 500 individuals in India [Fan and Anand, 2016].
- In India: High infant mortality rate, only 15% of mothers receive antenatal care, mental health issues are prevalent [Venkatashiva Reddy et al., 2013].
- Example: Lack of awareness regarding nutrition, immunization, diseases prevention and treatment, maternity care, and family planning in villages of Bihar (a state in India) [Friedman and Somani, 2002].

Macro-level Pla

Introduction

Micro-level Planning

Experiments 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Abstract Problem Statement

Given a set of n villages and limited resources, determine a visitation policy so as to reach the most number of affected people, i.e. utilize the limited number of health workers in the most effective fashion.

Introduction •	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Contribu	tions			

Our main contributions include:

- Macro-level planning (region-level) \rightarrow p-functional regions problem (PFRP).

Addressing the heterogeneity of health problems across villages.

Introd	uction

Macro-level Planning

Micro-level Planning

Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Macro-level Planning

Figure: Administrative boundaries (credits: quickgs.com)

Introduction

Macro-level Planning

Micro-level Planning

Experiments 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Macro-level Planning

Figure: New "public-health district" boundaries (not an actual simulation)

Introduced by [Duque et al., 2012].

• Aggregate *n* areal units into *p* contiguous groups.

- Predefined objective function with a given set of criteria or constraints.
- The objective function can be formulated to minimize the dissimilarity of areal units.

Introduced by [Duque et al., 2012].

- Aggregate *n* areal units into *p* contiguous groups.
 - *p* = number of public health districts desired, and *n* = total number of villages.

- Predefined objective function with a given set of criteria or constraints.
- The objective function can be formulated to minimize the dissimilarity of areal units.

Introduced by [Duque et al., 2012].

- Aggregate *n* areal units into *p* contiguous groups.
 - *p* = number of public health districts desired, and *n* = total number of villages.
- Predefined objective function with a given set of criteria or constraints.
- The objective function can be formulated to minimize the dissimilarity of areal units.
 - Maximize the similarity in public health issues facing each areal unit.

• Smallest areal or spatial unit is a village (or a town).

Introduction O	Macro-level Planning ●00	Micro-level Planning	Experiments 000000	Conclusion
Optimiza	tion Objective			

The objective function in our case is as follows:

$$Maximize \sum_{k} \sum_{i} c_{ik} x_{ik}$$
(1)

- Index k (k = 1,..., n) denotes a village selected as a functional center of the region. Index i (i = 1,..., n) denotes a village.
- c_{ik} : Denotes the amount of health-related movement between a village *i* and a functional center *k*. We model it as a function of population given the available data.
- x_{ik}: Decision variable indicating whether village *i* is included within region *k* (1) or not (0).
- Maximizes the interactions between the villages and the functional center within a region.

Introduction O	Macro-level Planning ○●○	Micro-level Planning	Experiments 000000	Conclusion
Optimiza	ation Problem C	onstraints		

- The optimization problem simultaneously performs allocation, identifies functional centers and maintains contiguity of regions.
- Two more decision variables exist in the problem: s_{ik} (sinks, to identify functional centers) and f_{ijk} (flows, to maintain contiguity).
- *s_{ik}*: Decision variable denoting whether village *i* is chosen to be a functional centre (sink) (1) or not (0).
- *f_{ijk}*: Decision variable denoting the amount of conceptual flow between villages *i* and *j* in region *k*.
- Constraints are adapted from the well-known PFRP problem and are elaborated in our paper.

Introduction O	Macro-level Planning 00●	Micro-level Planning	Experiments 000000	Conclusion
Example				

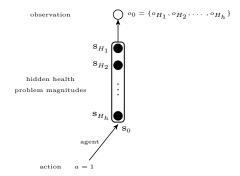


Figure: A solution for p = 5

Micro-level Planning Problem Statement

Micro-level planning after macro-level planning for distributing targeted health services.

Given a set of n villages and k ($k \ll n$) health workers with varied expertise, allocate each health worker to at most one village so as to reach the most number of affected people.


0	000	• 000 000000000	000000	
Cature (

• Universe of health problems $H = \{H_1, \ldots, H_h\}.$

<u>5, A, U</u>

Setup

- For every health problem *H_i*, the problem is to select *k* out of *n* villages to visit.
- Each village has a hidden health problem intensity
 S_{Hi} ∈ {0, 1, ..., n_s − 1}. Higher S_{Hi} implies higher prevalence of that health problem in the village.
- $\mathbf{O}_{H_i} \in \{0, 1, \dots, n_o 1\}.$
- Visit = observing *all h* health problems.

Figure: Hidden health problem magnitudes & observations

Introduction 0	Macro-level Planning	Micro-level Planning ○●○○○○○○○○○○○	Experiments 000000	Conclusio
Setup -	Transitions			

Three types of transitions:

- When a health agent of "type" (skill) *H_d* visits a village:
 - 1. \mathbf{S}_{H_d} transitions according to a $n_s \times n_s$ transition matrix $\overline{T^{1,H_d}}$.
 - 2. All other $S_{H_i}(i \neq d)$ transition according to $T^{1,H_i,gen}$.

• When a village is not visited:

3. All **S** transition according to $[T^{0,H_i}]$ (natural rate of deterioration).

 $T^1 \rightarrow$ reduces magnitudes of health problems, $T^0 \rightarrow$ increases the magnitudes.

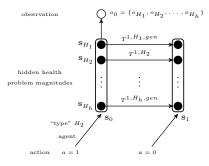


Figure: A two round representation of the Micro-level Planning model thus far

- When a health agent of "type" H_d visit a village,
 - She makes an observation regarding every health problem h depending on the current hidden health problem magnitude in that village.
 - She gets the reward associated with the observation.
 - Then the hidden health problem magnitude of H_d transitions according to T^{1,H_d}.
 - Sest of the hidden problem magnitudes H_i , ∀i ∈ {1,...,h} \ {d} transition according to $T^{1,H_i,gen}$.
- For the villages the health agents do not visit,
 - They do not have any observation.
 - 2 They get reward 0.
 - The hidden health problem magnitude transitions according to T^{0,Hi}, ∀i.

Introduction 0	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Complet	e Model			

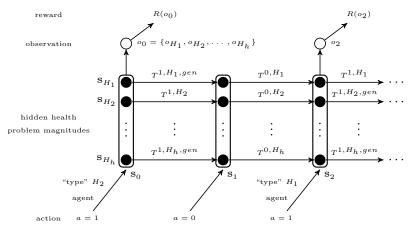


Figure: Complete Model

Introduction O	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Restless B	andits			

What are restless bandits?

- Multi-armed bandit problem: *k* out of *n* arms need to be activated at every round.
- The states of the active arms transition while the states of the passive arms do not change.

• In restless multi-armed bandits (RMABs), the states of the passive arms also transition.

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Restless B	andits			

What are restless bandits?

- Multi-armed bandit problem: *k* out of *n* arms need to be activated at every round.
- The states of the active arms transition while the states of the passive arms do not change.
- In restless multi-armed bandits (RMABs), the states of the passive arms also transition.
- This is close to our setting where the hidden health problem magnitudes (states) can transition even when a village (arm) is not visited (passive arm).

• PSPACE-hard to find the optimal strategy to general RMABs [Papadimitriou and Tsitsiklis, 1999].

- Exact health states unknown \rightarrow maintaining belief b_{H_i} of each possible state of every possible health problem (H_i) in every village.
- Belief update ("type" H_d health agent when a = 1):

$$b'_{H_{i}}(s') = \begin{cases} \eta_{1} \sum_{s \in \mathbf{S}_{H_{i}}} b_{H_{i}}(s) \ O_{so}^{H_{i}} \ T_{ss'}^{1,H_{i}}, & a = 1, i = d \\ \eta_{2} \sum_{s \in \mathbf{S}_{H_{i}}} b_{H_{i}}(s) \ O_{so}^{H_{i}} \ T_{ss'}^{1,H_{i},gen}, & a = 1, i \neq d \\ \sum_{s \in \mathbf{S}_{H_{i}}} b_{H_{i}}(s) \ T_{ss'}^{0,H_{i}}, & a = 0. \end{cases}$$

$$(2)$$

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Index Po	licies			

• To solve general RMABs, index policies are used which assigns a value to each arm to measure how rewarding it is to activate an arm at every stage.

• In literature, **Whittle index** is used for RMABs [Whittle, 1988].

Whittle Index Policy

The policy is to activate the arms with the k highest Whittle Indices.

- Concept: The amount of subsidy that needs to be provided to every arm which would make passive action optimal for the current state.
- Larger subsidy → larger gap between active action (activate) and passive action → more attractive to activate this arm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
M/bi+tla	Index Policy			

Formally,

$$I(x) \triangleq \inf_{m} \{m : V_m(x; a = 0) \ge V_m(x; a = 1)\}$$

- Whittle Index of an arm is the smallest *m* that would make passive action optimal for current state *x*.
- V_m(x; a = 0) (V_m(x; a = 1)) denotes the maximum cumulative reward the player can achieve until the end if he takes passive action (active action) at the first round at the state x with subsidy m.

Introduction O	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Whittle In	dex Policy			

Utilizing the belief states:

• When a village is not visited, the immediate reward is the subsidy and there is a β-discounted future reward.

$$V_m(b_{H_i}; a = 0) = m + \beta V_m(b_{H_i,a=0})$$
 (3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• When a village is visited, there is an expected immediate reward (first term) and there is a β -discounted future reward. $V_m(b^o_{H_i,a=1})$ is the value function at new belief $b^o_{H_i,a=1}$ that is updated from b_{H_i} .

$$V_{m}(b_{H_{i}}; a = 1) = \sum_{s \in \mathbf{S}_{H_{i}}} b_{H_{i}}(s) \sum_{i=1}^{h} \sum_{o \in \mathbf{O}_{H_{i}}} O_{so}^{H_{i}} R(o) + \beta \sum_{o \in \mathbf{O}_{H_{i}}} \sum_{s \in \mathbf{S}_{H_{i}}} b_{H_{i}}(s) O_{so}^{H_{i}} V_{m}(b_{H_{i},a=1}^{o})$$
(4)

• The final value function.

$$V_m(b_{H_i}) = \max\{V_m(b_{H_i}; a = 0), V_m(b_{H_i}; a = 1)\}$$
(5)

• The Whittle Index for belief b_{H_i} .

$$I(b_{H_i}) \triangleq \inf_{m} \{m : V_m(b_{H_i}; a = 0) \ge V_m(b_{H_i}; a = 1)\}$$
(6)

 The passive action set φ_{H_i}(m), which is the set of belief states for which passive action ("not visit") is the optimal action given subsidy m.

$$\phi_{H_i}(m) \triangleq \{ b_{H_i} : V_m(b_{H_i}; a = 0) \ge V_m(b_{H_i}; a = 1) \}$$
(7)

Introduction	Macro-level Planning	Micro-level Planning	Experiments
O	000		000000

Numerical Evaluation of Whittle Index

- Indexability requires that for a given state x, its optimal action can never switch from passive action to active action with the increase of m.
- We prove that the RMAB is indexable for $m \subseteq [hR(0) \beta h \frac{R(n_o-1)-R(0)}{1-\beta}, hR(n_o-1)].$
- Given the indexability, the Whittle Index can be found by simply doing a binary search within the range $m \subseteq [hR(0) \beta h \frac{R(n_o-1)-R(0)}{1-\beta}, hR(n_o-1)].$

(日) (同) (三) (三) (三) (○) (○)

- Given the subsidy *m*, the passive action set $\phi(m)$ can be computed using a POMDP model.
- Every single health problem H_y in every village is modeled as a POMDP – similar to a subset of the RMAB problem setup.
- Given the subsidy m, $\phi(m)$ can be determined by solving a POMDP model which can be set up in a similar way as the problem setup.
- We can combine the POMDP models of every village to form a full POMDP model for a particular health problem.
- Such *h* complete POMDPs can be created to consider all the health problems.

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments ●○○○○○	Conclusion
Experime	ntal Setup			

A region of 30 villages (pop. 60,000) in Arwal, a district in Bihar.

Figure: Bihar (highlighted) in India (image credits: Wikipedia)

- Health agents: ASHAs + ANMs, among others.
- 1 health worker per 1700 individuals.
- 5 Primary Health Centres and 65 Health Subcentres in the whole district.
- Major issues: lack of infant care and ante-natal care, malaria, TB, and leprosy.

Macro-level Planning Data

- Demographic data from the Indian Census 2011 [Government of India, 2011].
- A village = smallest spatial unit.
- Population as the indicator for activity.
- Reasonable proxy for activity (given no other suitable alternatives) as public health is a resource utilized by all people of all ages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Macro-level Planning

Micro-level Planning

Experiments

Conclusion

Macro-level Planning Results

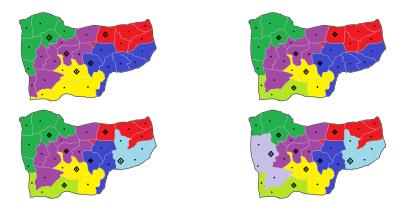


Figure: Illustration of optimal districting of 30 villages for different number of regions (p = 5, 6, 7, 8)

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments 000000	Conclusion
Micro-leve	Planning			

- Planning village-by-village visit.
- Now, micro-level planning can be conducted in batches of n/p number of villages (≤ 6 in our case).
- Evaluated in terms of the cumulative reward achieved within the first 30 rounds (discount factor $\beta = 0.9$).

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments ○○○○●○	Conclusion
Results				

Table: Solution Quality for small-scale problem: $n = 2, k = 1, h = 2, n_s = n_o = 2$

Random	Myopic	POMCP	POMDP	WI
3.280	3.521	3.590	3.717	3.695

• Rewards obtained \propto number of individuals positively affected by the health workers.

- As expected, exact POMDP provides the highest solution quality.
- Whittle Index policy performs reasonably well.

Introduction O	Macro-level Planning 000	Micro-level Planning	Experiments ○○○○○●	Conclusion
Results				

Table: Evaluation for
$$n = 5, h = 2, n_s = n_o = 2$$
, varying k

k	Random	Myopic	POMCP	WI
1	7.441	10.512	11.810	12.124
2	10.431	14.030	15.281	16.425
3	14.129	18.459	18.780	19.294

Table: Evaluation for $n = 5, h = 3, n_s = n_o = 2$, varying k

k	Random	Myopic	POMCP	WI
1	10.441	16.002	18.111	19.356
2	15.006	20.141	22.164	23.379
3	21.463	23.988	25.665	26.414

Introduction O	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Key Takea	aways			

- ✓ We have presented a hierarchical model PFRP method for macro-planning and a RMAB approach with Whittle Index Policy for micro-planning.
- ✓ A PFRP model is used to draw districts based on demographics and health outcome priorities.
- ✓ **RMABs** are effective in modeling the nature of the health problems.
- ✓ Whittle Index policies are a suitable alternative to solving exact POMDPs for such kinds of problems.
- ✓ This general structure and setup may also be applicable to various other scenarios of skill-based service delivery and limited resources allocation problems.

Introduction 0	Macro-level Planning	Micro-level Planning	Experiments 000000	Conclusion
Conclusior	ן ר			

- Similar approaches can be explored by health administrations for planning health policies in the future.
- Important to test and fine-tune this algorithm in a real-world deployment setting.
- Possible directions of future work:
 - Improving the districting model with more "relevant" data.

• Working on the scalability aspects of the overall model.

Introduction	Macro-level Planning	Micro-level Planning	Experiments

Thank You!

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Email: bbhattac@usc.edu

Web: https://biswarupb.github.io