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Abstract—An important means of controlling recurrent infec-
tious diseases is through active screening to detect and treat
patients. Disease detection on a large network of individuals
is a challenging problem, as the health states of individuals
are uncertain and the scale of the problem renders traditional
dynamic optimization models impractical. Moreover, efficient use
of diagnostic and labor resources is a major concern, especially
when the disease is prevalent in a resource-constrained region.

In this paper, we propose a novel active screening model
(ACTS) and an algorithm to facilitate active screening for
recurrent (no permanent immunity) diseases. Our contributions
include: (1) A new approach to modeling SEIS type diseases
– diseases with a latent stage and no permanent immunity –
using a novel belief-state representation, and (2) a community
and eigenvalue-based algorithm (TRACE) to generate an online
policy to perform multi-round active screening. We discuss in
detail the advantages and disadvantages of existing eigenvalue-
based, community-based and greedy approaches towards solving
the problem and illustrate the need of developing an algorithmic
active screening strategy to achieve better performance scalably.
We demonstrate the applicability of TRACE by performing
extensive experiments on several real-world publicly available
datasets, most of which emulate human contact, with a range of
settings to demonstrate applicability to a range of diseases. To the
best of our knowledge, this is the first work on developing a multi-
round active screening model and active screening algorithm for
diseases with a latent stage and no permanent immunity.

Index Terms—Public health, SEIS Disease Model, Active
Screening, Eigenvalue, Community, Belief states

I. INTRODUCTION

Curable infectious diseases are responsible for millions
of deaths every year. Tuberculosis (TB), one such disease,
affected over 10 million people worldwide in 2016, and caused
over 400,000 deaths in India, the country with the highest
TB mortality [1]. While low-cost treatment programs are
available, many rely on patients to seek medical care (passive
screening). However, individuals mistake their symptoms for
another condition and not seek care. Public health agencies
therefore engage in active screening, where individuals in
the community are asked to undergo diagnostic tests and are
offered treatment if tests return positive results [2].

It is costly to seek out at-risk individuals, and active
screening efforts are often limited to high risk groups such
as household TB contacts [3]. This method can successfully
identify patients [4], and has been extensively evaluated [5].
However, this approach can be challenging to implement
widely in resource-constrained regions such as India, as there
are large transmission networks of potential patients and the
number of health workers is limited. Prior studies show that
even when focusing on high-risk TB groups in urban slums in
India, the yield can be very small — only 0.8% of screened
individuals were diagnosed with TB [3]. With an estimated
1 million undiagnosed TB cases in India, efficient active
screening is the need of the hour [3].

Our first contribution is a model of the active screen-
ing problem (ACTS) which considers the underlying disease
dynamics. We focus on recurrent infectious diseases with
a latent stage (SEIS model of disease [6]), such as TB.
Individuals can be susceptible (S) (currently healthy, but may
become exposed), exposed (E), or infected (I). We consider
diseases for which there is no means to achieve permanent
immunity, either through vaccination or one time infection. As
for TB, we assume treatment is effective for both exposed and
infected individuals, making the individuals healthy (though
again susceptible). Health workers are uncertain about the
health state of individuals and have a small budget relative
to population size for active screening. To the best of our
knowledge, models of multi-round active screening for SEIS
diseases are missing in the AI literature.

Our second contribution is a novel algorithm—Targeted
Resolution of Active diseases using Communities and
Eigenvalues (TRACE)—to guide scalable active screening.
In TRACE, we use network community structure to form
a community graph, and then we select nodes to screen
by maximizing the reduction of the largest eigenvalue of a
variant of the community graph. TRACE takes into account the
underlying disease dynamics and uncertainty of individuals’
health states. TRACE is easily adaptable to most SEIS or SIS
type diseases.

We illustrate the benefits of TRACE via extensive testing



on several real-world human contact networks against various
baselines across a wide range of disease parameters (which
also demonstrates its applicability to various other diseases).

II. DISEASE MODEL AND BACKGROUND

We first introduce the disease model notations for our
problem. An individual can be in one of the following health
states: S (a healthy individual susceptible to disease), E (the
individual has been exposed and has latent disease), or I
(the individual is infected). We do not consider an explicit
recovered or permanent immunity state (R) in our model, as
this has been the focus of prior studies [7], [8]. Diseases like
Hepatitis A and measles follow a SEIR or SIR pattern where
treated individuals may achieve permanent immunity by enter-
ing R state. We focus on recurrent diseases, where permanent
immunity is not possible (e.g. TB, typhoid), represented by
SIS [9] or the more general SEIS [6] disease dynamics.

Disease Model: We adopt a SEIS model [6] for modeling
the disease dynamics, given by:

Susceptible (S) α−→ Exposed (E)
Exposed (E)

β−→ Infected (I)
Infected (I) c−→ Susceptible (S)

In the context of a graph of individuals, α is the edge-wise
fixed probability of a susceptible (S) individual (node) being
exposed (E) to the disease from an infected (I) neighbor, β
is the fixed probability of an exposed (E) individual (node)
becoming infected (I), and c is the probability of an infected
(I) individual (node) voluntarily seeking and successfully
completing treatment and returning to the susceptible S stage.
We assume that the treatment takes place in one time period,
where a period represents the duration needed for a complete
treatment regimen (∼half a year for TB).

Prior Approaches for Active Screening: Most previous
work on active screening deals primarily with SIR or SEIR
type diseases, often referred to as the Vaccination Problem [7],
[8], [10]–[12], where permanent immunization (entry into R
state) can be viewed as removing nodes from the graph [13]–
[15]. Exploiting this idea, [14], [15] focus on immunization
ahead of an epidemic and suggest a heuristic method of
removing a set of k nodes based on the eigenvalues of the
adjacency matrix. [11] considers the problem of selecting the
best k nodes to immunize in a network after the disease
has started to spread. These methods assume that the exact
status of each node is known and deal with a single round of
vaccination or screening. However, our paper focuses on multi-
round active screening of SEIS diseases, where the complexity
increases substantially due to lack of permanent immunity,
existence of a latent stage, and uncertainty about the health
states of all individuals. To the best of our knowledge, this
complex setting has not been attempted previously in the
AI literature. Generally, the problem of minimizing disease
spread is different from the well-studied problem of influence
maximization [16], [17] as well, where one optimizes the
selection of seeds or starting nodes for maximizing spread,

as opposed to optimizing the selection of nodes on which to
intervene in order to minimize spread.

III. THE ACTIVE SCREENING (ACTS) PROBLEM

Setup. We define k ACTS agents that are to be deployed
at every timestep t to diagnose and treat I and E individu-
als. Individuals are part of a contact network G(V,E), and
infection spreads via the edges in the network. There are |V |
individuals, and N(i) denotes neighbors of individual i in the
network. The network structure (graph) is known from the
beginning (t = 0). Each individual (node) in the network is
in one of the health states {S,E, I}. Let sti denote the state
of individual i at time t. In every round, the ACTS agents
can either choose to screen a node i (action ai = 1) or not
(ai = 0). Only k nodes can be screened in one round. A
screened node is observed to be in state S, E, or I , and an
unscreened node generates no observation. The ACTS agents
maintain a belief about the state of every individual, starting
with no information at t = 0. The beliefs about the health
states evolve over time as the agents gain information about
individuals (detailed later in this section).

Transition Dynamics. The probability of an individual
undergoing a change in health state is given by:

T 0 =

S E I[ ]
S qj 1− qj 0
E 0 1− β β
I c 0 1− c

,

T 1 =

S E I[ ]
S qj 1− qj 0
E 1 0 0
I 1 0 0

,

and qj = (1− α)|{k∈N(j) | stk=I}|

where, T 0 is the probability matrix for non-screened individ-
uals and T 1 is the probability matrix for screened individuals.
The rows denote the state at time t and the columns denote
the state at t + 1. The transition probabilities follow the
disease dynamics described earlier. In particular, qj captures
the probability that node j does not become exposed from
his infected neighbors {k ∈ N(j) | stk = I}. Both I and E
individuals who are screened can be treated, but we assume
E individuals do not seek treatment voluntarily since their
disease is latent unlike I individuals who seek treatment
voluntarily with the probability c. For model simplicity, we
assume S individuals cannot directly transition directly to I
state. This is not an extreme assumption for TB, where the
overall duration with latent TB can be much longer than the
round length (6 months).

Objective Function. We finally define a Quality Adjusted
Life Years (QALY) function Q(t), associated with full health
– a commonly used metric for such intervention studies in
public health [18]–[20]. Here,Q(t) =

∑
j Q(stj), where Q(stj)



is defined as follows (values from [18]–[20]).

Q(stj) =


+1, stj = S

+1, stj = E

+0.66, stj = I

(1)

We focus on maximizing health outcomes in this study and
leave cost considerations to future work. We can now define
the problem statement.

Problem Statement. (ACTS Problem) Given a contact net-
work G(V,E), disease transition dynamics T 0, T 1, time hori-
zon T , and budget k, find an active screening policy, i.e. find
a set of budget-limited actions a at each time step, such that
QALY (T ) =

∑t=T
t=0 Q(t) is maximized.

Belief States. We do not know the true health states of
every individual at all times perfectly. We therefore model
our belief of node i’s health state as bti = [bti,S , b

t
i,E , b

t
i,I ],

where bti,j is the probability node i is in state j. This marginal
representation of health state belief for each node i addresses
scalability issues, as representations of the joint distribution of
health state beliefs over all nodes can be prohibitively large.
We assume marginal beliefs bti’s can be updated independently
at each node. Such independence assumptions have been made
in prior literature on the spread of contagion [21], [22] and
experimentally found to have a minimal effect on outcomes.

Belief Update. We assume perfect observability of the
health state sti of any node when it is screened. We cannot
observe the health state of a node at time t if we do not
screen it at time t. We update the belief for each individual
(node) i who voluntarily come to the clinic to an intermediate
belief state b̄ti = [0, 0, 1]. We also update the beliefs of
actively screened individuals to an intermediate belief state
b̄ti ∼ sti. We update the intermediate beliefs of the remaining
individuals as:

b̄ti =
[bti,S , b

t
i,E , (1− c)bti,I ]

bti,S + bti,E + (1− c)bti,I
For each node i that voluntarily came to a clinic or was
actively screened, the final belief update is: bt+1

i = [1, 0, 0]
because the node will be successfully treated and returned to
the susceptible state if it was in E or I state. For the remaining
nodes, we update to bt+1

i as follows:
bt+1
i = b̄ti Γt, where

Γt =

wti 1− wti 0
0 1− β β
c 0 1− c

 , wti =
∏

j∈N(i)

(1− αb̄tj,I).

This belief update procedure is an important and novel
aspect of our proposed ACTS model.

While the ACTS Problem can be interpreted as a POMDP,
our model is slightly different from standard POMDP models,
since in the active screening setting a screening action results
in observing the current health states of the individual and
not the individual’s transitioned state. This difference can be
handled straightforwardly, as in [23], [24] using a modified
value iteration technique. However, we show in Section VI that
known POMDP approaches are not scalable for our problem.

IV. MOTIVATION FOR TRACE

Given the problem setup, we motivate the need for the
TRACE algorithm by showing that many prior approaches or
simple extensions do not achieve the desired goal.

We know from [10] that, given a network and limited
resources, finding the optimal strategy for vaccinating a limited
number of individuals (SIR scenario) and quarantining a
limited number of individuals are NP-hard. Also, given a
network and limited resources, finding the optimal strategy
for placement of a limited number of sensors for monitoring
the course of an epidemic is NP-hard [25]. The ACTS Problem
as defined in Section III is a generalized (harder) case of the
above problems where we try to treat infected people without
removing them from the graph since there is no permanent
immunity and re-infection is possible (SEIS scenario). Com-
puting an individual’s probability of infection in SIS networks
(SIS is a special version of the SEIS model, where β = 1)
and computing the expected number of infections are also NP-
hard [25], [26].

A. Eigenvalue Based Prior Approach

We now consider the circumstances under which diseases
or epidemics die out on their own. In the absence of any inter-
vention (action), the system is a discrete non-linear dynamical
system. Such systems have been studied in prior work, and
the following has been shown:

Proposition 1. [22] Let λ∗A denote the largest eigenvalue
of the adjacency matrix A of the underlying graph, otherwise
known as the spectral radius. Then, the epidemic dies out if
and only if

α

c
<

1

λ∗A
and β 6= 0 .

Remark: An observation is that the bound on λ∗A above is
same as derived for SIS model (without exposed E state) in
earlier work [21]. This is because in the SEIS model, the E
state must eventually become I if β 6= 0; thus, in the long run,
E behaves similarly to I when β 6= 0 and there is no active
intervention.

If permanent immunization were possible, immunization
can be viewed as removing nodes. Given the result above,
one would wish to remove the set of k nodes that reduces
the largest eigenvalue the most. This is a NP-complete prob-
lem. [14], [15] suggest a heuristic that greedily removes
k nodes one at a time, each time selecting the node that
maximizes the reduction in the largest eigenvalue. However, in
this paper we deal with diseases where permanent immunity
is not possible (SEIS). Based on Prop. 1, we also observe that
a disease is unlikely to die out on its own in low-resource
countries (c is low) with highly contagious diseases (high α),
thus necessitating active screening.

B. Budgetary Threshold for Random Intervention

We can gain insight into how uncertainty in individuals’
health states affects our problem by examining the fully-naive
random screening strategy. We focus on the budget k, the



number of nodes that can be screened and treated in one
period. Intuitively, increasing k will lead to faster reduction
of disease prevalence with random screening.

Lemma 1. Assume that we know the infected patients belong
to a set It in every round t such that |It| ≤ m, where m is an
arbitrary constant corresponding to the size of the network.
Then, the epidemic dies out using k random interventions
every round if k > m(λ∗Aα− c).

Proof. The k random interventions among It nodes increase
c by at least k/m and α is unchanged. Thus, the disease will
die out if α

c+k/m < 1/λ∗A.

Besides providing a threshold for k for which a naive
intervention can achieve disease eradication, the above result
can be understood as the price of limited information. Lower
values of m, meaning more information (better estimate of
the true health state), requires fewer random interventions to
eradicate the disease. This underscores how uncertainty in the
health states is an additional challenge when the number of
interventions are limited.

C. DYNAMICEIGEN Procedure

Prior methods to minimize the largest eigenvalue greedily
chose nodes to delete in order to generate a graph with lower
maximal eigenvalue. Since we do not know which nodes are
infected and can transmit infection with certainty, we augment
this method by incorporating uncertainty. To motivate our
approach, consider a hypothetical scenario where the state
of each node is known for sure. We only wish to intervene
on infected and exposed nodes, and S nodes do not effect
neighboring nodes. Using Ai,j = Aj,i = 1 to represent an
edge from i to j in the adjacency matrix A of the input
graph, we see that removing all edges from S nodes is same
as multiplying the rows and columns of A corresponding
to nodes in state S by zero. Then we can greedily choose
among I and E nodes (lines 6-7) with the goal of reducing
the largest eigenvalue of the adjacency matrix of the directed
graph and return nodes that have total weights above the
threshold k. Algorithm 1 describes this approach. While our
intervention may be undone over time (treated nodes can be
reinfected), repeated screenings may push the system towards
lower disease prevalence.

Algorithm 1 EIGEN(A, w, k)

Input: Adjacency matrix A, function w for weight of each
node, min total weight of nodes to remove k

1: V ← Number of vertex of input graph
2: for all i ∈ {1, . . . , V } do
3: A′ ← A
4: A′i,: ← 0 , A′:,i ← 0 . Remove ith node
5: λi = LargestEigenvalue(A′)

6: Sort nodes 〈v1, . . . , vV 〉 corresponding to increasing λi

7: return first h nodes such that
∑h
i=1 w(vi) ≥ k

Now let us return to our problem setup, where we do not
know the exact state of each node but rather have beliefs about
each node. We now propose the DYNAMICEIGEN procedure,
which is shown in Algorithm 2. A natural extension of the
hypothetical scenario above is to multiply the row of a node i
in the adjacency matrix A by 1− bti,S , the belief probability it
is E or I (line 3). This is a softer version of making the row
of all S nodes all zeros.

Algorithm 2 DYNAMICEIGEN(A,b, w, k)

Input: Adjacency matrix A, belief bt, function w for weight
of each node, min total weight of nodes to remove k

1: V ← Number of vertex of input graph
2: for all i ∈ {1, . . . , V } do
3: Ai,: = Ai,: ∗ (1− bti,S) . Multiply ith row

4: return EIGEN(A, w, k)

However, we see that Algorithm 2 is computationally ex-
pensive and may not scale up to large graphs.

Lemma 2. The time complexity of the DYNAMICEIGEN algo-
rithm is O(|V |3), where |V | is the total number of nodes.

Proof. Finding the largest eigenvalue of a |V | × |V | matrix
takes O(|V |2) time. Since we are looping |V | times to find
the top k nodes to screen, the overall time complexity is
O(|V |3). Sorting the eigenvalues to get the top k values takes
O(|V | log |V |) time, but the overall time complexity remains
O(|V |3).

It was shown in [27] that the EIGEN (or DYNAMICEIGEN)
procedure can be sped up by instead finding the k nodes
with the highest degree (or highest degree × (1 − bti,S))
which takes O(|V |2) time. However, we do not use this
approximation, since it has merit only in the case of high
assortativity (ρD). For example, the actual human contact
networks we considered in Section VI do not necessarily have
high assortativity.

D. Eigenvalue and Greedy

A simple and fast alternative to the eigenvalue approach
could be to select k nodes with the highest probability of being
infected (bi,I ) at every time step (denoted further as Greedy).
Unfortunately, both the eigenvalue method and Greedy method
have shortcomings in our dynamic problem. We demonstrate
this through some observations for different classes of net-
works. In all the observations, we use (α, β, c) = (1, 1, 0)
as an example. Also, for the sake of comparison in these
Observations, we assume that the probability of a node not
being healthy is known with some degree of certainty.

Observation 1. There exists a class of graphs where the
Greedy method with a budget of k = 2 requires an expected
O(|V |!) rounds to completely eradicate the disease whereas
an eigenvalue-based method can eradicate the disease in an
expected O(|V |2) rounds with the same budget.



Justification. Consider a star graph (Figure 1a), where all the
nodes are initially in I state. With a budget of 2, the eigenvalue
method will choose the star center and one arbitrary node
among non-central nodes to treat in every round. The disease
will thus die out in an expected

∑|V |−1
i=1

|V |−1
i ∼ O(|V |2)

rounds. On the other hand, the Max Belief method will choose
k nodes randomly among the nodes in state I . If the center
node is not picked in every two rounds (S 1 round−−−−→ E

1 round−−−−→ I)
before the disease dies out, the center will become infected,
and after two more rounds the non-central nodes will be I
except 2k nodes which can be either in S, E or I state (we
ignore this w.l.o.g.). The probability of the center node being
chosen every second round (because it takes two rounds to
move from S to I state) is k

|I| where |I| is the total number of
infected nodes in the round with the center being in I state.
The probability of the center node being chosen every second

round until the disease dies out is
∏ |V |

2k−1−1
i=0

k
|V |−(2k−1)i . This

gives the desired result.

I

I

I

I

I

...
...

· · ·

· · ·

(a)

S

S S

· · · · · · · · · · · ·

S I SS· · ·

(b)

Fig. 1: Comparing Eigenvalue and Greedy

Observation 2. There exists a class of graphs where an
eigenvalue-based method can never eradicate the disease with
a budget of k < |V |

2 whereas the Greedy method can eradicate
the disease in one round with a budget of k ∼ O(1).

Justification. Consider a binary tree (Figure 1b), with Θ(k)
leaf nodes in I state and others in S state. An eigenvalue-
based method chooses the nodes that equally partitions the
graph, and thus in this case it will start choosing from the
root and go down the tree in breadth-first order, and reach the
leaf nodes only after it has chosen all the |V |−12 parent nodes.
Greedy however can eradicate the disease in the first round by
simply choosing k nodes which have the highest probability
of being in I state, which are the infected leafs.

E. Utilizing Communities

Infectious diseases such as TB are transmitted via close
contact with an infected person, usually within communi-
ties [28]. Curing whole communities may potentially be an
efficient way to reduce infection (can be interpreted as graph
shattering [10]), since infection propagation is stopped for
large sections of the graph. Also in our case, given the
lack of additional information about the network like patient
attributes, it is natural to utilize this approach. We also note
that forming communities might enable us to reduce the largest
eigenvalue, i.e. apply Algorithm 2, in a scalable fashion.

However, we show in the following Observations that using
communities alone can be both better or worse than Greedy
or eigenvalue based approaches for different classes of graphs,
further motivating the need for our algorithm, TRACE, which
identifies communities in addition to considering beliefs and

reducing the largest eigenvalue. The exact method of achieving
scalability using communities is elucidated in the next section.
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(b)

Fig. 2: Comparing Eigenvalue, Community and Greedy

Observation 3. There exists a class of graphs where an
eigenvalue-based method can never eradicate the disease with
a budget of k and the Greedy method requires an expected
O(|V |k) rounds to completely eradicate the disease, but a
community-based method can eradicate the disease in an
expected O(|V |2) rounds.

Justification. Let us consider a graph where there exists M
disjoint clusters (Figure 2a), each of size less than or equal
to the budget k with k << M , where M is the number of
communities. All the nodes are in I state and are arranged in
each cluster such that the the top k nodes, removal of which
causes the most decrease in the largest eigenvalue, all lie in
different clusters. In such graphs, it is evident that community-
based algorithms can cure one community at a time and can
achieve full eradication after an expected M2 ∼ (|V |/k)2 ∼
O(|V |2) rounds because a cured community cannot infect
other communities. However, an eigenvalue-based technique
may not choose communities as a whole and therefore, an
eradication cannot be guaranteed unless the budget is increased
to |V | which is equal to the size of the graph. Similarly, the
Greedy method may not choose communities as a whole and
therefore takes an expected

(|V |−1
k−1

)
rounds to cure the first

community,
(|V |−k−1

k−1
)

rounds to cure the second community,
and so on, thus taking approximately O(|V |k) rounds to cure
all the infected nodes.

Observation 4. There exists a class of graphs where a
community-based method can never eradicate the disease
whereas the Greedy or eigenvalue-based method either can
eradicate the disease in one round with a budget of k.

Justification. Consider M disconnected star graphs (Fig-
ure 2b), where M − 1 stars are of size less than k and one
star is of size k, and k ≤ M . All the center nodes of the
stars are in I state, and all the other nodes are in S state.
With a budget of k, community-based algorithms will keep
choosing the same star with k nodes thus never eradicating
the disease. However, either the Greedy or eigenvalue-based
method can directly choose the k center nodes in the first
round and completely eradicate the disease in one shot.

V. TRACE ALGORITHM FOR ACTIVE SCREENING

We introduce a structured algorithm to generate an online
policy—Targeted Resolution of Active diseases using Com-
munities and Eigenvalues (TRACE)—that combines elements
of the three approaches (Greedy, and eigenvalue based, and



community based methods) to identify k individuals to actively
screen at every time-step. The complete TRACE algorithm is
shown in Algorithm 3. First, we discuss the two step process
of community formation (lines 1–4 in Algorithm 3).

Node Type Estimation: We assign an attractiveness score
to reflect the effectiveness of intervening on the node. If we
knew the true health state of every node, then we would
intervene only on the infected nodes as only these nodes spread
infection. However, in the absence of such precise information,
at every time-step the nodes are sorted according to a measure
of possible benefit, defined as Rti = σbti,E+bti,I for each node
i (line 2), where σ is an arbitrary parameter that controls the
relative importance of E nodes relative to I nodes. The nodes
with the highest one-third of Rt values are labeled g1 (group
1), the next one-third to be g2 (group 2), and the rest to be g3
(group 3) (line 3).

Super-Node Creation: After labeling all nodes, locally
similar nodes (nodes of the same label that share an edge) are
clustered into a super-node iteratively. This process generates
a set of super-nodes, each of which is labeled as g1, g2 or
g3 based on the labeling of its component nodes. There can
be multiple super-nodes with the same label in the network.
The sizeu of a super-node u is the number of component
nodes in the super-node. The weights of edges between nodes
in different super-nodes are added to produce new inter-
super-node edges. This super-nodes formation uses the known
method of graph coarsening [29] (line 4). As an example, in
Figure 3 we combine the two g1, two g2 and three g3 nodes to
form three super nodes with size two (and another with size
one). These super-nodes emulate the communities of I , E and
S in real-world networks. We refer to the resultant graph of
super-nodes as the community graph, where the belief of each
node btu,S is the average of btv,S of all component nodes v in
super-node u.

g1

g3

g2

g2

g1

g3

g3

1

1

11

1

1

1

1

1
g1 [2]

g3 [2]

g3 [1]
g2 [2]

3

1

1

1

Fig. 3: Example: 4 super-nodes formed from 7 nodes

Next, we call the DYNAMICEIGEN sub-procedure to choose
nodes to screen in the weighted community graph using
size as weights on each super-node (line 5, where A is the
adjacency matrix of the community graph). The procedure
returns a set of super-nodes where the total size (weight) is
not lower than the budget k. If the total size is higher (line 6),
we remove a super-node (line 7), compute left-over budget κ
(line 8), modify the original graph by removing all nodes from
the left-over super-nodes (line 9), and call the sub-procedure
again to select κ nodes from the modified original graph with
weights 1 on each node (line 10). It must be noted that our
proposed DYNAMICEIGEN procedure is also one of the novel

Algorithm 3 TRACE Algorithm

Input: Adjacency Matrix A of graph, Belief bt, Budget k
1: for all i ∈ {1, . . . , n} do
2: Rti = σbti,E + bti,I

3: Sort Rt and label each node as g1, g2, or g3
4: A,b

t
, size← Coarsen(A, g1, g2, g3,b

t)

5: U← DYNAMICEIGEN(A,b
t
, size, k)

6: if
∑

u∈U sizeu > k then
7: u′ ← the last selected super-node from U
8: κ = k −∑u∈U\u′ sizeu
9: A,bt ← remove all nodes in U\u′ from A,bt

10: a← DYNAMICEIGEN(A,bt,1, κ)
11: Active screen nodes {v | v ∈ a or v ∈ u for u ∈ U\u′}

aspects of TRACE.
Now that we have combined community structure with

belief states (denoted as Comm in Section VI), we compare
it to the DYNAMICEIGEN procedure (without super-node
formation).

(a)

I

S

S

S

S

...
...

· · ·

· · ·

I

I

I I· · ·

(b)

Fig. 4: Comparing Comm and DYNAMICEIGEN

Observation 5. There exists a class of graphs where DYNAM-
ICEIGEN without super-nodes can never completely eradicate
the disease with a budget of k whereas the Comm algorithm
can eradicate the disease in an expected O(|V |) rounds.

Justification. The justification to this observation closely fol-
lows the reasoning in Observation 3 (Figure 4a).

Observation 6. There exists a class of graphs where the
Comm algorithm with a budget of k requires an expected
O((|V | − |V ′|)!) rounds, to completely eradicate the disease
whereas DYNAMICEIGEN without super-nodes can eradicate
the disease in an expected O(|V ′|) rounds with a budget of k,
where |V ′| is the size of the smaller star.

Justification. Consider a graph with two stars of different sizes
(Figure 4b) where the smaller star is of size |V ′| ≥ k and
the larger star has a size of |V | − |V ′|. Initially, the center
node in the larger star is in state I and the other nodes are
in state S. All the nodes in the smaller star are in state I .
The dynamic eigenvalue algorithm can eradicate the disease
with just a budget of k in an expected O(|V ′|) rounds by
choosing both the stars’ center and then choosing one non-
central node and the center, or two non-central nodes in each
round based on if the center node is in I state. However, the
Comm algorithm will cluster the smaller star and cure all of
them before choosing the I node in the larger star, where
by then all of the nodes in the larger star would have been
infected. Based on an analysis similar to Observation 1, we can
conclude that the disease will die out in an expected O((|V |−
|V ′|)!) rounds.



We see that TRACE is considerably faster and scales
to larger graphs due to the creation of super-nodes which
effectively reduces the graph size.

Theorem 1. In a scale-free graph, the number of super-
nodes formed by the Coarsen algorithm is of the order
|G| ≈ O

(
3|V |
2d

)
, where |V | is the total number of nodes and

d is the average degree of the nodes in the original graph.

Proof. Consider a scale-free graph. The probability that a node
i shares an edge with another node j of the same type (say,
g1) is given by

ri,j =
∑
i

∑
j

[
1−

(
1− 2d̂i

|g1|d̂

)d̂j]
P (d̂i)P (d̂j)

=⇒ E[ri,j ] = r ≈ 2d

|V | (since
∑
i

d̂iP (d̂i) = d̂)

where d̂ ≈ |g1|d|V | , d is average degree of the graph, and |g1| is
the number of nodes of type g1. When the first node of type
g1 arrives it forms a super-node by itself. When the second
node of type g1 arrives, it can form a super-node by itself with
probability 1− r2,1 or it can coalesce with the first node with
probability r2,1 to form one combined super-node. If there are
a total of n′ nodes which arrive, we can calculate the expected
number of groups (super-nodes) g1 nodes forms as:

E[|G1|] = 1 + E[(1− r2,1)] + . . .+ E
[ n′−1∏
i=1

(1− rn′,i)
]

By Jensen’s Inequality, E[f(x)] ≤ f(E[x]) when f is convex.
Here, f(x) is of the form (1−x)n which is a convex function
since x < 1 in our case. Therefore, we can rewrite the above
equation as:

E[|G1|] ≤ 1 + (1− r) + . . .+ (1− r)n′ =
1− (1− r)n′

r
The above expectation expression is also true for E[|G2|] and
E[|G3|]. Also, given the node type estimation process, the
number of nodes of each type is equal, thus n′ = |V |/3.
Hence, E[|G|] ≤ E[|G1|] + E[|G2|] + E[|G3|] = 2d

3|V | . Thus,

|G| ≈ O
(

3|V |
2d

)
.

Theorem 2. The time complexity of the TRACE algorithm
(Algorithm 3) is O(|V | log |V | + |E| + |G|3), where |V | and
|E| are the total number of nodes and edges in the original
graph respectively, and |G| is the total number of super-nodes.

Proof. The sorting procedure (line 3) takes O(|V | log |V |)
time. The Coarsen procedure (line 4) takes O(|E|) time. By
Lemma 2, we know that finding the top k nodes to screen by
finding the largest eigenvalues (line 5) takes O(|G|3) time.

We know by Theorem 1 that |G| ≈ O
(

3|V |
2d

)
for scale-free

graphs, thus there is almost a (1− 27
8d3 ) reduction in average

runtime compared to Algorithm 2.

Observation 7. Suppose the belief states equal the actual
health states and (α, β, c) = (1, 1, 0). Then, TRACE is
guaranteed to perform better than or at least as well as its

individual components, in terms of both budget and time, in
all the classes of graphs discussed in the Observations.

Justification. For example, in Figure 1a, in case of exact
beliefs, it is guaranteed that TRACE will choose the central
node since that is the best choice by eigenvalue (all I nodes
have equal belief of [0,0,1]) and thereby eradicate the disease
in O(|V |2) rounds with a budget of k = 2. Thus, following
Algorithm 3, we can similarly show that TRACE will in fact
perform at least as well as its individual components in all
the discussed classes of graphs (variants of trees, stars, and
clusters). We omit the details for brevity.

Thus, TRACE is able to leverage the advantages of each
approach. Although these special graphs do not by themselves
represent real-world human contact graphs, real graphs are
formed from a combination of these special graphs. Estimating
that the belief space representation is a reasonably accurate
embedding of the information we do have (there is no mis-
information in observations while screening), We hypothesize
that TRACE’s superior performance in these skeleton graphs
can be extended to interpret good performance in realistic
graphs as well. This hypothesis is validated via experiments.

VI. EXPERIMENTS

We consider a variety of real-world, publicly available
datasets on which we perform experiments. Table I lists all
the networks and their properties. Most of the networks were
collected in actual human contact settings. The networks are
chosen to have a varied range of size (|V |), degree (d),
assortativity (ρD), and epidemic threshold (1/λ∗A).

As previously mentioned in Section III, we first attempt to
solve the ACTS Problem as a POMDP, by using the state-of-
the-art modified POMCP algorithm [23]. We show in Figure 5
that POMCP takes exponential time with increasing |V | and
fails to scale up beyond 10 nodes (India network) for fixed
values of k and T while TRACE is able to generate an
online POMDP policy without an exponential increase in
runtime. Factored POMDPs [40] and newer algorithms like
DESPOT [41] also fail to scale up beyond a few nodes due to
memory overflow. All results are averages over 20 simulation
runs.

3 4 5 6 7 8 9 10
0

250

500

750
POMDP

TRACE

Fig. 5: Runtime (s) v/s Number of nodes (|V |); k = 3, T = 10

Settings. Next, we analyze TRACE’s performance under
various α, β, c settings. α, β, c may depend on social contact
patterns and biological factors which may vary across popu-
lations [42]. We explore a range of these parameters to show
disease behavior under a variety of scenarios. Since eradication
does not depend on β (by Proposition 1), we vary only α, c and
fix β = 0.25 for the experiments. The passive treatment rate c
may vary widely, as it depends on resource availability (clinic



Network |V | 1
λ∗
A

d ρD
α = 0.1, c = 0.2 (Milder disease) α = 0.3, c = 0.2 (Strong disease)

Random SE DE MB Comm TRACE Random SE DE MB Comm TRACE

Hospital [30] 75 0.027 15.19 -0.18 61 29 73 87 108 131 50 17 26 67 73 100
Office [31] 92 0.050 8.20 -0.05 76 32 98 120 132 151 71 27 39 77 87 108
Friendship [32] 134 0.102 3.03 0.29 123 41 151 193 201 228 114 41 52 129 139 152
India [33] 202 0.095 3.43 0.02 145 60 169 216 245 260 127 54 107 160 173 198
Exhibition [34] 410 0.042 6.74 0.23 212 68 257 326 430 529 199 66 184 267 292 356
Flu [35] 788 0.003 150.12 0.05 574 82 662 810 1164 1371 545 70 492 719 943 1191
Irvine [36] 1899 0.021 7.29 -0.18 849 106 1294 1808 2147 2474 952 83 869 1464 1783 2120
Adolescent [37] 2539 0.076 4.12 0.25 1607 125 2013 2436 2847 3250 1331 89 1224 1597 1994 2641
Chess [38] 7301 0.015 7.65 0.37 5824 TLE TLE 7692 9624 11697 4403 TLE TLE 6640 8032 9904
Escorts [39] 16730 0.032 2.33 -0.03 13083 TLE TLE 16565 18630 21441 9464 TLE TLE 12901 14347 16990

TABLE I: Increase in QALY (T = 30) over None (rounded to the nearest integer). TLE implies time limit of 10000s for all rounds
exceeded. All TRACE values are statistically significant (p < 0.05).

accessibility, outreach campaigns, etc.). In all simulations, the
budget is k = 5% of the total population, and σ = 0.5.

Setup. In the real world, active screening is performed only
after conducting initial surveys on the prevalence and inci-
dence of the disease. To simulate this, we run our experiments
in two stages.
• Stage 1 (Survey Stage): This stage starts at t = 0 with

equal number of S,E, I individuals and ends at t = 10.
No active screening is done and the disease evolves nat-
urally. The initial belief b0 for all nodes is assumed to be
[ 13 ,

1
3 ,

1
3 ] since we have no prior information. Beliefs are

updated when individuals come to the clinic voluntarily
(with probability c).

• Stage 2 (ACTS Stage): Here, we consider various screen-
ing algorithms. We perform active screening from t = 11
to t = T = 30 to represent 10 years of time (each round
is 6 months [43]). Beliefs are updated according to the
belief update scheme presented in Section III.

Metric. We compare the benefit of these screening strategies
over and above no intervention (None) based on the QALY
objective (QALY (T ), Table I). In None, the evolution of the
health states is based on disease dynamics with no active
screening for all T timesteps.

Comparison with baselines. Given the lack of previous
algorithms for our problem setting, we first measure the
performance of TRACE against simple baselines:
(1a) Random: Randomly select nodes for active screening.
(1b) Static Eigen (SE): Choose the nodes using Algorithm 1

(no belief information) on the network (no super-node
formation). This baseline uses only the graph structure
information.

TRACE provides significant improvement over None com-
pared to SE and Random (p < 0.05). The improvement is
also practically significant (Cohen’s d > 1: large effect).

Comparison with individual components. We then show
the performance of the three approaches that were combined
to form TRACE, illustrating that no single approach is solely
responsible for TRACE’s performance. TRACE’s performance
is both statistically and practically significant (p < 0.05 and
Cohen’s d ∼ 0.6: medium effect) when compared to the three
approaches:
(2a) Dynamic Eigen (DE): Choose the nodes using just

Algorithm 2 without any super-node formation.

(2b) Greedy or Max Belief (MB): Choose the nodes with the
higher belief of being infected in that time-step, i.e. bti,I .

(2c) Community (Comm): Choose the nodes by a 0-1 knap-
sack algorithm (knapsack weight = budget k) after super-
node formation. This does not utilize eigenvalues.

Supernodes. By Theorems 1 and 2, we indicated that the
number of supernodes formed is a fraction of the total number
of nodes |V |. We illustrate this experimentally by showing the
average number of supernodes formed per round (Figure 6) for
all the networks.
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Fig. 6: Average |G|/|V | per round for all the networks,
α = 0.1, β = 0.25, c = 0.2

Discussion. We see from Table I that TRACE not only
performs better than other algorithms in all the datasets, it has
an even superior performance especially in cases of higher
average degree (d), because of better community formation.
Comm’s performance also follows this pattern due to the same
reason. It is also interesting to note that although we expect
the QALYs to increase with increasing closeness of the α/c
value to the epidemic threshold value (1/λ∗A), we see that
the values strongly follow the average degree trend. This is
because the α/c values are probably too high compared to the
1/λ∗A values.

We note that MB is a competitive algorithm, thus illustrat-
ing that the belief space representation is indeed a possible
working embedding of the underlying health states. The per-
formance of DE and other screening algorithms worsens with
increasing α values due to higher contagiousness compared to
available budget while non-belief based baseline SE performs
poorly as expected since it essentially chooses the same nodes
repeatedly.

We also see an increasing divergence of TRACE’s perfor-
mance over time (Figure 7 shows this for two representa-
tive networks) compared to Random and SE. This clearly
illustrates that the synergy of belief states, eigenvalues and
community gives TRACE an advantage from early timesteps.
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Fig. 7: Increase in QALY (T ) over None for varying T
(α = 0.1, β = 0.25, c = 0.2)

Even though our objective function measures QALYs –
a widely accepted metric in public health literature – we
know that E individuals cannot be classified as “healthy” for
the purpose of reducing infection in a network even if they
generally do not face a decreased “quality of life”. Hence,
we experiment by also measuring the increase in the number
of healthy (S) individuals over time (

∑T
t |S|t) over None,

equivalent to the total number of healthy half life years gained
if no active screening was conducted, for varying α and c
values (Figure 8). Concurrently, we also note the increase
in QALYs for the same α and c values for a representative
network – India network – a human contact network with
202 nodes, collected from a rural village in India, a setting in
which TB active screening may take place (Figure 9).
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(a) Varying α (c = 0.2)

c = 0.2 c = 0.4 c = 0.6

400

500

600

700

800

900

DE MB

Comm TRACE

(b) Varying c (α = 0.2)

Fig. 8: Increase in
∑t=30
t=0 |S|t for TRACE components over None

(India network)
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Fig. 9: Increase in QALY (T = 30) for TRACE components over
None (India network)

It is clear that for high α cases, there is not enough budget
to estimate and cure the rapidly forming I nodes quickly.

However, the most interesting observation is the seemingly
opposite performance of the screening algorithms depending
on the metric of comparison for the varying c case. This is
occurring due to the fact that in high c situations, the network
is automatically able to cure a lot of the I nodes by itself,
thus the active screening algorithms end up curing more E
nodes. While curing E nodes increases the number of S nodes,
it does not lead to an increase in the QALY as much (by
Eqn. 1). Also, the QALY of None itself becomes high due to
the higher proportion of I individuals seeking voluntary cure.
Similar trends are seen in the other networks – not displayed
here due to space constraints.

Further, we analyze the minimum additional budget required
to achieve performance comparable to TRACE in Figure 10,
revealing the budgetary savings from using TRACE. TRACE
with all its components produces significant savings over
attempting to use each component alone.
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c=0.2
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20%

30%

DE MB Comm

Fig. 10: Minimum extra budget (in %) required for another
algorithm to match the performance of TRACE (India network)

Finally, we note that the average village population even
in highly populated countries like India is around 2000 [44],
much less than the size of our largest tested dataset. This
indicates potential for field testing.

VII. CONCLUSION

We proposed a novel active screening model (ACTS) and an
algorithm (TRACE) to facilitate multi-round active screening
for recurrent diseases. Unlike existing works in AI literature,
the ACTS model incorporates uncertainty of health states as
well as the SEIS disease complexities of no permanent cure
and a latent stage. TRACE performs significantly better, in a
scalable fashion, than the baselines and each of its components
individually in a variety of real-world inspired settings.

Future directions include incorporating more complex dis-
ease models (e.g. including maternal immunity, carrier states
etc.), including birth and death processes, and introducing
patient heterogeneity (age, gender, medical history and other
features) and costs of treatment and screening into the model.
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[34] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck, “What’s in a crowd? analysis of face-to-face behavioral net-
works,” Journal of theoretical biology, vol. 271, no. 1, pp. 166–180,
2011.
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