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AI FOR SOCIAL GOOD



INTRODUCTION

 Number of health problems – AI can be utilized

 HIV, infectious diseases, nutrition, among others

 Curable infectious diseases

 Tuberculosis - 10M+ people affected in 2016 [WHO]

 Minimizing the number of infected individuals



INTRODUCTION – ACTIVE SCREENING

 Individuals may not be able to seek treatment themselves

 Distance from clinic, failure to self diagnose etc.

 Often – a matter of outreach and identification

 Resource constraints – e.g. 1 health worker / 500 people (India)

 Problem of Active Screening

 Definition: Individuals sought out by health workers and treated

 Passive Screening: Individuals seek treatment voluntarily



INTRODUCTION – ACTIVE SCREENING

 Which nodes to act on first?

 Which nodes to act on next?



PROBLEM STATEMENT

ACTS Problem

Given –

 A known network of individuals (n)

 Infectious disease parameters

 Limited resources (k)

Find – An active screening policy

To maximize – Number of healthy individuals over time



STATUS QUO

Previous works generally do not consider:

 Multiple timesteps

 Uncertainty in health states

 Latent stages

 Lack of permanent immunity

As discussed: Hard to predict infected nodes

In the field: Heuristics used – degree, high-risk societies



CONTRIBUTIONS

1. ACTS Active Screening Model

 POMDP-like model

2. TRACE Algorithm for ACTS

 Synergy of 3 Key Ideas: Greedy, eigenvalue & community

 Practically significant results of increase in healthy population



OVERVIEW

1. Problem Modeling

 SEIS Disease Model

 Active Screening Model

2. TRACE Algorithm

 Belief States & Attractiveness Score (FIRST KEY IDEA)

 Dynamic Eigenvalue (SECOND KEY IDEA)

 Community Formation (THIRD KEY IDEA)

3. Experiments
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SEIS COMPARTMENTAL DISEASE MODEL

 3 states – S (healthy), E (exposed, cannot infect others), I (infected)

 Note: c is the probability individuals voluntarily screen themselves

 Latent stage (E) + Lack of permanent immunity



ACTIVE SCREENING MODEL – [S], [A], T, O, Z, R

 n individuals  n nodes

 Each node’s state – S, E or I 

 States not readily known by us (agents)

 Action: Screen (1) or not screen (0)

 k (< n) individuals to be screened at each stage



ACTIVE SCREENING MODEL – S, A, [T], O, Z, R

 Cyclic and unidirectional: S → E → I

 From Row state To Column state

 q(j): Number of infected neighbors of node j



ACTIVE SCREENING MODEL – S, A, [T], O, Z, R

Higher probability

Lower probability



ACTIVE SCREENING MODEL – S, A, T, [O], [Z], R

 Actual health state observed on screening (a=1)

 Else, no observation



ACTIVE SCREENING MODEL – S, A, T, O, Z, [R]

 +1 for every healthy (S) individual

 In shown network, R = +6

 Objective: Maximize increase in number of 

disease-free half-years over no intervention


𝑡=0

𝑡=𝑇

|𝑆|𝑡



WHY NOT POMDP? – SCALABILITY
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TRACE  ALGORITHM

 Generates an online POMDP policy

 Synergy of three approaches:

1. Community [Hendrickson and Leland, 1995]

2. Beliefs (Greedy)

3. Eigenvalues [Prakash et al., 2012]



HOW TO HANDLE UNKNOWN STATES?

 Maintain beliefs

 Maintaining marginals good enough [Chakrabarti et al., 2008]

 Other representations – prohibitively large

 Belief update rules – similar to T matrices



HOW TO HANDLE UNKNOWN STATES?

 Maintain beliefs for EVERY node → O(3 x n) space

 Maintaining marginals good enough [Chakrabarti et al., 2008]

 Other representations – prohibitively large



BELIEF STATES UPDATE

 Belief update rules (𝑏𝑖
𝑡 → 𝑏𝑖

𝑡+1) – similar to T matrices

 Start with [0.33, 0.33, 0.33] belief for all

 Belief set to actual state for nodes screened in current timestep

 E.g. Change to [1,0,0] on screening S node, [0,1,0] if E, [0,0,1] if I

 Update normally if not screened in current timestep



BELIEF STATES – EXAMPLE UPDATE (T=0 →T=1)

If nodes with light arrows are screened (initially all beliefs are [0.33,0.33,0.33])

𝑏4
𝑡+1 = [1, 0, 0]

𝑏9
𝑡+1 = [0, 1, 0]

𝑏2
𝑡+1 = [0.3, 0.4, 0.3]𝑏11

𝑡+1 = [0.4, 0.3, 0.2]



FIRST KEY IDEA

GREEDY

 Attractiveness score for every node based on beliefs

 Simply screen based on higher score

 Possibly not optimal



GREEDY SELECTION

[0, 1, 0]

[0.6, 0.3, 0.1]

[1, 0, 0]

[0.4, 0.3, 0.3]

[0.2, 0.44, 0.36] [0, 0, 1]

0.5

0.25

0

0.45

0.58 1

𝜎 = 0.5



TOWARDS OPTIMALITY

EIGENVALUES

 An epidemic dies out iff

[Prakash et al., 2012]

 𝜆𝐴
∗ = largest eigenvalue of the adjacency matrix A of a graph

 High 𝛼 and/or low c make the limit harder to achieve



SECOND KEY IDEA – DYNAMIC EIGEN

 “Remove” nodes such that 𝜆𝐴
∗ decreases → increases 1/𝜆𝐴

∗

 S nodes cannot infect neighbors → remove S nodes

 Our case: multiply each row by (1 − 𝑏𝑖,𝑆
𝑡 )

 Iteratively remove + check → slow for large n



THIRD KEY IDEA – SPEEDING UP DYNAMIC EIGEN

COMMUNITIES

 Group nodes by attractiveness scores

 Coarsening [Hendrickson & Leland, 1995]

 Number of groups ≤ 𝑛 → DynamicEigen scales up

 Can be proven for scale-free graphs:

number of groups = O
1.5

𝑑
𝑛 (d = average degree)



COMMUNITIES – GRAPH COARSENING
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TRACE ALGORITHM – THREE STEPS

1. Greedy approach: Belief information [Unknown health states]

2. Community-based approach: Grouping nodes [Speeds up next step]

3. Eigenvalue-based approach: Reducing spectral radius [Optimality]

None superior by itself! (7 observations in extended version)
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NETWORKS

 10 real-world networks in extended version (n = 75 to 16730)

 3 in epiDAMIK submission (n = 202 to 1899)

1. India (n = 202, [Banerjee et al., 2013]): Collected from a rural Indian village

2. Infectious Exhibition (n = 410, [Isella et al., 2011])

3. Irvine (n = 1899, [Opsahl & Panzarasa, 2009])



SETUP

 𝛼 = 0.1 − 0.3, 𝛽 = 0.25, 𝑐 = 0.2 − 0.6

 Each round = 6 months

 Total simulation = 10 years

 𝑘 = 5%, 𝜎 = 0.5

 Metric: Increase in number of disease-free half-years over no intervention


𝑡
|𝑆|𝑡,𝑎𝑙𝑔𝑜 −

𝑡
|𝑆|𝑡,𝑛𝑜𝑛𝑒



RESULTS –VARYING PARAMETERS

 MB: Greedy

 DE: Just DynamicEigen

without community

 Comm: 0-1 knapsack 

select without eigen



RESULTS – OVER TIME



KEY TAKEAWAYS

✓Hard problem – Multi-round + SEIS + unknown health states

✓Belief states to estimate the uncertain health status

✓↓ spectral radius ⇒ ↓ disease prevalence

✓Three approaches: Eigenvalue, community, greedy

✓TRACE → practically significant results



FUTURE WORK

 Addressing TB in India

 Future: Complex disease models, birth and death, costs, network uncertainty
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“TRACE: Algorithmic ACTS for Preventing the Spread of 
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