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Abstract

Autoencoders (AE) are essential in learning representation
of large data (like images) for dimensionality reduction. Im-
ages are converted to sparse domain using transforms like
Fast Fourier Transform (FFT) or Discrete Cosine Transform
(DCT) where information that requires encoding is minimal.
By optimally selecting the feature-rich frequencies, we are
able to learn the latent vectors more robustly. We success-
fully show enhanced performance of autoencoders in sparse
domain for images.

Introduction

Autoencoders play an important role in machine learning.
They are simple learning models which aim to transform in-
puts into outputs with the least possible amount of distor-
tion. Autoencoders were first introduced by (Rumelhart et
al. 1988) to address the problem of “backpropagation with-
out a teacher”, by using the input data as the teacher. The
biological essence of AEs lies in the fact that AEs are a
proxy for addressing the mystery of how synaptic changes
induced by local biochemical events can be coordinated in a
self-organized manner to produce global learning and intel-
ligent behavior. More recently, AEs have gained prominence
due to the applicability of deep architectures in their design
which has led to state-of-the-art results.

In neural net language, a variational autoencoder consists
of an encoder, a decoder, and a loss function. A typical au-
toencoder can usually encode and decode data very well
with low reconstruction error, but the latent code does not
learn the probability distribution of the data. Therefore, if we
are interested in generating more data, a typical autoencoder
generally do not seem to work as well. Another version
of autoencoders, called “variational autoencoder (VAE)”,
is used to solve this problem since they explicitly define
a probability distribution on the latent code. Even though
the actual neural network architecture is very similar to a
regular autoencoder, the difference is that the hidden code
comes from a probability distribution that is learned during
the training. VAEs were defined by (Kingma and Welling
2013) and (Rezende, Mohamed, and Wierstra 2014).
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Autoencoders are essential in learning representation of
large data (like images) for dimensionality reduction. (Hin-
ton and Salakhutdinov 2006) described an effective way of
initializing the weights that allows deep autoencoder net-
works to learn low-dimensional codes that work much better
than principal components analysis (PCA). In this paper, we
convert the input images to a sparse domain using transforms
like Fast Fourier Transform (FFT) or Discrete Cosine Trans-
form (DCT). Fourier analysis converts a signal from its orig-
inal domain (usually time or space) to a representation in the
frequency domain (and vice versa). A Fast Fourier Trans-
form (FFT) rapidly computes such transformations by fac-
torizing the Discrete Fourier Transform (DFT) matrix into a
product of sparse factors, thereby, reducing the complexity
of computing the DFT.

In our case, the images (originally in spatial domain) are
converted to frequency domain using the transform tech-
niques. Dominant spatial frequencies (which define main
structure or edges) are located in the center of the trans-
formed image while frequencies away from the center con-
tain finer details of the image. Using autoencoder if we are
able to capture the central spatial frequencies it would aid
in reducing loss to a significant amount, without having to
consider the entire image. This reduces data samples the au-
toencoder needs to process to learn an embedding in reduced
space. We are able to show enhanced performance of autoen-
coders in sparse domain for images.

Motivation

Autoencoders use neural networks to encode and decode
data distributions. It is often observed that autoencoders end
up memorizing data points and are not able to learn an ef-
ficient latent vector of the data. Autoencoder architectures
with high number of parameters, map individual data points
to discrete points completely ignoring the correlation among
them. This phenomenon makes the performance of an au-
toencoder heavily dependent on the power (number of lay-
ers) of the decoder. Researchers are trying to figure out an
autoencoder with a robust decoder. We use our autoencoder
module to map the FFT of closely linked images - alike im-
ages from same distribution to map to similar distribution.
This is inspired by the fact that motion cues or temporal
cues act as weak supervisory signals for object detection
(Agrawal, Carreira, and Malik 2015), (Goroshin et al. 2015).



Architecture

We use a simple two-layered autoencoder network, al-
though the proposed model is applicable to other stacked
autoencoder models. The network reduces the dimension of
MNIST dataset from 784 to 20. Table 1 depicts the entire
network architecture. Layers 1 & 2 in Table 1 are the encoder
module and Layers 3 & 4 constitute the decoder module.

Layer Type  Maps and Neurons
1 Linear 784 x 400
2 Linear 400 x 20
3 Linear 20 x 400
4 Linear 400 x 784

Table 1: Autoencoder Network architecture

In our experiments we also deploy a single layered de-
coder of dimension 20 x 784, for robustness comparison.

Experiments
Setup

We use the MNIST handwritten digits dataset for experi-
mentation. We train the network on the MNIST images. The
training set has 60000 images and the test set has 10000 im-
ages. The network is trained using Adam Optimizer with a
learning rate of 0.001. The batch size is kept at 256 images
and the network is trained for 20 epochs.

Results & Illustrations

The test-set (magnitude reconstruction) loss of AE in sparse
domain and vanilla AE is shown in Figure 1. We observe
that the AE in Fourier domain outperformed the vanilla AE
model in terms of binary cross-entropy loss. The proposed
network converged exceedingly well, reaching near optimal
value after the first epoch only. In Figure 2, we have also
shown the test-set loss when 1 layer of decoder was re-
moved.
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Figure 1: Test-set Loss for 2-layered AE-FFT and AE
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Figure 2: Test-set Loss for AE-FFT, 1-layered vanilla AE &
2-layered vanilla AE

Figure 2 shows the test-set (magnitude reconstruction)
loss for AE & AE-FFT having a single decoder layer
(20x784). The two losses are also compared with the vanilla
AE model have 2-layered decoder. From the plot we can
observe that a 1-layered AE-FFT outperforms the vanilla
2-layered model. Also it is seen that AE-FFT is robust to
decoder layer reduction & increase in cross-entropy loss is
much less compared to vanilla AE.

Conclusion

We show that by optimally selecting feature-rich frequen-
cies, we are able to enhance performance of prevalent Au-
toencoder architectures. This reduces the dependency of au-
toencoder architectures on huge datasets. The test-set loss
of AEs in sparse domain outperforms the vanilla AE model
thereby showing enhanced performance of autoencoders in
sparse domain for images.
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