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● Software Engineering @ National Digital Library – Member of the first 

team to build the core backend of India’s largest public digital library 
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These indicate 
tips and tricks 
which can be 

used for actually 
training GANs.



Part 0: Prerequisites
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Basic assumptions of this talk

Prerequisites

● What is supervised and unsupervised machine learning?

● General idea about deep learning and NNs

● What is a statistical distribution?

● What is a zero sum game?
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Machine Learning

● Supervised: Task of inferring a function from labeled training data. Labelled and a 

teacher exists. Eg. SVM, decision trees, random forests.

○ Classification

○ Regression

● Unsupervised: Model the underlying structure or distribution in the data in order 

to learn more about the data. No labels and no teacher.

○ Clustering

○ Association

● Semi-supervised: Problems where you have a large amount of input data (X) and 

only some of the data is labeled (Y).
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Deep Learning

Application of artificial neural networks (ANNs) to learning tasks that contain 

more than one hidden layer.
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Statistical Distribution

Normal Distribution
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Zero-sum game

● If one gains, another loses.

● Rock, paper, scissors is an example of a zero-sum game without perfect 

information. No matter what a person decides, the mathematical 

probability of winning, drawing, or losing is exactly the same.
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Part 1: GANs
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Definition

● GANs are a class of artificial intelligence algorithms 

● used in unsupervised machine learning

● implemented by a system of two neural networks contesting 

with each other 

● in a zero-sum game framework. 

● Minimax game based on Nash equilibrium.

● Introduced by Ian Goodfellow (currently at Tesla) et al. in 2014.
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Next frame video prediction

Lotter et. al., 2016
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Single image super resolution

Ledig et. al., 2016
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Why GANs?

● To augment data. Eg. generate new images from the existing ImageNet dataset.

● Seems to produce better samples faster. 

● GANs are able to infer frames, upscale images better than existing techniques.

● Photorealistic images/reconstruct 3D models. In the extreme case, create 

photos/movies by itself!

● No Monte Carlo (MCMC) approximations required to train.

● The GAN framework can train any kind of generator net.

● No need to design the model need to obey any kind of factorization.

● Easier to use discrete latent variables.

● Goodfellow has discussed more specific advantages in his Quora answer.
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Generative model

● A model P(X; ϴ) from which we can draw samples.

● E.g. Gaussian Mixture Model (GMM)

● But GMMs are not complex enough to draw samples of images from it.
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Taxonomy of Generative Models
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Adversarial nets framework

● Generator (G): The counterfeiter who is trying to produce real data.

● Discriminator (D): The cop who is trying to identify which is the fake data.

● More technically, G tries to “trick” D by generating samples that are hard 

for D to distinguish from the real data.

● G: trained to maximize the probability of D making a mistake.

● D: trained to estimate the probability that a sample came from data 

distribution rather than G.

17



Conceptual diagram

●
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The Generator (G)

● Deterministic mapping from a latent random vector to sample 

from q(x) ~ p(x).

● Usually a deep neural network (DCGAN).

The Discriminator (D)

● Parameterised function that tries to distinguish between samples 

from real images p(x) and generated ones q(x). 

● Usually a deep convolutional neural network (DCGAN).
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The Objective Function
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The Objective Function

● Change the objective from min log(1-D(G(z))) to max log(D(G(z))) to avoid 

saturating gradients early on when G is terrible.

● pz(z): Random noise injected to produce stochasticity in a physical system; 

typically a fixed uniform or normal distribution with some latent 

dimensionality.

● For G fixed, the optimal discriminator D is:

Because, the function a log(y) + b log(1-y) achieves its maximum in [0, 1] at 

a/(a+b)

Refer original Goodfellow paper for all original GAN theory with derivations: 

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf (NIPS 2014)
21

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


The Algorithm
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GAN Training

1. Fix generator weights, draw samples from both real world and generated 

images.

2. Train discriminator to distinguish between real world and generated images.

3. Fix discriminator weights.

4. Sample from generator.

5. Backprop error through discriminator to update generator weights.

● Iterate until convergence. It is our hope that the generator gets so good that 

it is impossible for the discriminator to tell the difference between real and 

generated images. 
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GAN Training
● Training GAN is equivalent to minimizing the Jensen-Shannon divergence 

(symmetrized and smoothed version of the Kullback–Leibler divergence) 

between generator and data distributions. 

● Updating the discriminator should make it better at discriminating between 

real images and generated ones.

● Updating the generator makes it better at fooling the current discriminator.
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The Learning Process

25



The Learning Process
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So what do we get after training?

● D: Trained as an unsupervised “density estimator”, i.e. a contrast function 

that gives us a low value for data and higher output for everything else. 

○ D develops a good internal representation of the data.

○ Can be used as a feature extractor for a classifier, for example. 

● G: Parametrizes the complicated surface of real data.

○ Arithmetic on faces in the Z vector space: [man with glasses] - [man 

without glasses] + [woman without glasses] = [woman with glasses].
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Face Arithmetic

Radford et. al., 2015
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Issues
● Hard to train (immature tools for minimax optimization).

● Unstable dynamics: hard to keep generator and discriminator in balance. 

Generator can collapse. Need to babysit during training.

● Optimization can oscillate between solutions. Easy to get trapped in local 

optima that memorize training data.

● Unclear stopping criteria.

● No explicit representation of p
g
 (x).

● No evaluation metric so hard to compare with other models.

● Hard to invert generative model to get back latent z from generated x.

Do read this if you wish to train a GAN: https://github.com/soumith/ganhacks
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Convergence issues

● GANs don’t always converge. Especially difficult for large problems.

● A Game Theory paper titled “Characterization and Computation of Local Nash 

Equilibria in Continuous Games” by Ratliff et. al. gives some conditions under 

which simultaneous gradient descent on two player’s costs will converge 

but GANs never satisfy those conditions because the Hessian of the 

generators costs is all zeros at equilibrium. 

● The conditions mentioned however are not necessary conditions, thus 

GANs can converge sometimes.
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GAN Variations

31



DCGAN

● Unsupervised Representation Learning with Deep Convolutional Generative 

Adversarial Network (DCGAN).

● Most GANs today are at least loosely based on the DCGAN architecture 

(Radford et al., 2015). 
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DCGAN layers

● Use deep CNN for generator and discriminator instead of MLP. 

○ Replace any pooling layers with strided convolution. 

○ Use batchnorm in both the generator and the discriminator. 

○ Remove fully connected hidden layers for deeper architectures. 

○ Uses Tanh for the output (and sigmoid). 

○ Use Leaky ReLU in the discriminator and ReLU in the generator. 

● Use the trained discriminators for image classification tasks. 
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Part 2: Coding vanilla GANs
(using tf)

https://github.com/wiseodd/generative-mo
dels/blob/master/GAN/vanilla_gan/gan_ten
sorflow.py
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Imports

import tensorflow as tf 

from tensorflow.examples.tutorials.mnist 

import input_data 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.gridspec as gridspec 

import os
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Defining the discriminator weights and biases

X = tf.placeholder(tf.float32, shape=[None, 784])

D_W1 = tf.Variable(xavier_init([784, 128])) 

D_b1 = tf.Variable(tf.zeros(shape=[128])) 

D_W2 = tf.Variable(xavier_init([128, 1])) 

D_b2 = tf.Variable(tf.zeros(shape=[1])) 

theta_D = [D_W1, D_W2, D_b1, D_b2] 
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Defining the generator weights and biases

Z = tf.placeholder(tf.float32, shape=[None, 100])

G_W1 = tf.Variable(xavier_init([100, 128])) 

G_b1 = tf.Variable(tf.zeros(shape=[128])) 

G_W2 = tf.Variable(xavier_init([128, 784])) 

G_b2 = tf.Variable(tf.zeros(shape=[784])) 

theta_G = [G_W1, G_W2, G_b1, G_b2]
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What is Xavier Initialization?

● Initialize the weights in the network by drawing them from a distribution 

with zero mean and a specific variance (shown above)

○ nin is the number of neurons feeding into the neuron

○ nout is the number of neurons the result is fed to.

● Glorot & Bengio’s paper originally recommended using

● But we don’t usually use the original recommendation as:

○ Preserving the forward-propagated signal is much more important.

○ Difficult to find out how many neurons in the next layer consume the 

output of the current one.
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What is Xavier Initialization?

● It helps signals reach deep into the network. 

● If the weights in a network start too small, then the signal shrinks 

as it passes through each layer until it’s too tiny to be useful. 

● If the weights in a network start too large, then the signal grows 

as it passes through each layer until it’s too massive to be useful.
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Z

def sample_Z(m, n): 

return np.random.uniform(-1., 1., size=[m, n])
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D

def discriminator(x): 

D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) 

D_logit = tf.matmul(D_h1, D_W2) + D_b2 

D_prob = tf.nn.sigmoid(D_logit) 

return D_prob, D_logit
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G

def generator(z): 

G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) 

G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 

G_prob = tf.nn.sigmoid(G_log_prob) 

return G_prob
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Value definition

G_sample = generator(Z) 

D_real, D_logit_real = discriminator(X) 

D_fake, D_logit_fake = discriminator(G_sample) 

# D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) 

# G_loss = -tf.reduce_mean(tf.log(D_fake))
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Discriminator Loss functions

D_loss_real = 

tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit

_real, labels=tf.ones_like(D_logit_real))) 

D_loss_fake = 

tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit

_fake, labels=tf.zeros_like(D_logit_fake))) 

D_loss = D_loss_real + D_loss_fake 
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Generator Loss function

G_loss = 

tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits

=D_logit_fake, labels=tf.ones_like(D_logit_fake)))
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Adam Optimizer

D_solver = tf.train.AdamOptimizer().minimize(D_loss, 

var_list=theta_D) 

G_solver = tf.train.AdamOptimizer().minimize(G_loss, 

var_list=theta_G)
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What is Adam Optimizer?

● Best optimizer currently present. Best replacement for SGD.

● Estimates 1st-order moment (the gradient mean) and 2nd-order 

moment (element-wise squared gradient) of the gradient using 

exponential moving average, and corrects its bias.

● Combines the best properties of the AdaGrad and RMSProp 

algorithms to provide an optimization algorithm that can handle 

sparse gradients on noisy problems.

● Relatively easy to configure.

Reference: https://arxiv.org/pdf/1412.6980.pdf (ICLR 2015, Kingma & Ba)

47

https://arxiv.org/pdf/1412.6980.pdf


Define sizes & take input
mb_size = 128 

Z_dim = 100 

mnist = input_data.read_data_sets('../MNIST_data', 

one_hot=True)
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Initialize session
sess = tf.Session() 

sess.run(tf.global_variables_initializer())



Iterations

for it in range(1000000): 

if it % 1000 == 0: 

samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})

fig = plot(samples)

X_mb, _ = mnist.train.next_batch(mb_size) 

_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: 

X_mb, Z: sample_Z(mb_size, Z_dim)}) 

_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: 

sample_Z(mb_size, Z_dim)})
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Results
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Part 3: My AAAI+NIPS work
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AAAI 2017: Handwriting Profiling using GANs 
(Hand-GAN)
● System tries to learn the handwriting of an entity.

● Generate letter strokes which were not previously seen before.

● Used a modified architecture of DCGAN (Radford, Metz, and Chintala 2015).

● Used Reinforcement Learning to learn spacing, strokes and inflections – 

rewards and penalties to make the generator learn. 

● Data: MNIST and survey handwriting.

● Useful for Identification of forged documents, signature verification, 

computer generated art, digitization of documents.
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NIPS 2016: Synthetic Autonomous Driving 
using GANs (SAD-GAN)

● To make a controller trainer network using images plus key press data to 

mimic how a human learns driving.

● Used DCGAN.

● Built a keylogger software to automatically generate datasets by playing 

RoadRash races. Each race generated around 500 usable images. Played 

around 200 races!

● Trained the model on one video game (RoadRash) and compared the 

accuracy by running the model on other maps (GTA etc.) to determine the 

extent of learning.
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NIPS 2016: Synthetic Autonomous Driving 
using GANs (SAD-GAN)

Generator Discriminator
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● Receives Keypress + Input image at 
time t + Noise

● Tries to estimate image at t+1

● Receives generator image and 
actual t+1 image

● Tries to guess the correct image
● During training, it has created a 

feature map (classifier)



NIPS 2016: Synthetic Autonomous Driving 
using GANs (SAD-GAN)

AlexNet - Inputs: actual images at t and t+1, Output: Key pressed 
by a human who is expected to drive safely 
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NIPS 2016: Synthetic Autonomous Driving 
using GANs (SAD-GAN)

● G: Train to predict next image given current image and key press.

● D: Distinguish between dataset images and images generated by G.

● After reasonable efficiency is achieved in G, it is used to predict all three 

images (pressing left, right and up arrow keys)  from the given image.

● The three images are classified as “safe” and “unsafe” (by the AlexNet). If 

“safe”, go down the game tree. If “unsafe”, choose another option (image).

● The metric for reinforcement learning is set as the maximum number of 

levels down the game tree the decision yields a safe scene.
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NIPS 2016: Synthetic Autonomous Driving 
using GANs (SAD-GAN)
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Other interesting GAN research

● EBGAN: Energy input instead of probability distributions (2016, Zhao et. al.)

● Generative Adversarial Metric (GAM): Compare performance by judging 

each generator under the opponent’s discriminator. (2016, Im et. al.)

● GMAN: Generative Multi-Adversarial Networks. Modifies GAM to evaluate 

multiple adversaries. (ICLR 2017, Durugkar et. al.)

● So much more interesting stuff done, requires more talks!

58



Some fun GAN articles

● Learn GANs with Spongebob! (DCGAN with Tensorflow code): 

https://medium.com/@awjuliani/generative-adversarial-networks-explai

ned-with-a-classic-spongebob-squarepants-episode-54deab2fce39

● Abuse GANs to make 8-bit pixel art: 

https://medium.com/@ageitgey/abusing-generative-adversarial-networ

ks-to-make-8-bit-pixel-art-e45d9b96cee7 
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GAN Conclusion
● Not a magic solution to everything! (yet)

● Concept is relatively easy to understand, but training is a challenge.

● Open questions: Does an equilibrium exist where G wins (D loses)? Is the 

p
g
 really close to p

real
 (meaningful generation or simply memorization)?

● GANs are useful mainly for image datasets. It has been especially 

successful in text to image transformation and synthetic driving 

applications.

● Game theoretical aspect of GANs has not been explored adequately. 

https://arxiv.org/pdf/1703.00573.pdf (Paper from Princeton Theory 

group, Sanjeev Arora et. al., revised August 2017, ICML 2017)
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Other Selected Research

● Contextual Analytics Personal Assistant: Used Adobe Analytics usage data to model 

user intent and behavior to generate recommendations and work as a personal 

assistant to users. 1 US patent pending + 1 research paper.

● AI for electrical power grids: Fault analysis and subset selection for optimal economic 

dispatch using AI (deep learning) techniques. 2 research papers.

● Location Optimization of ATM networks: Where to place an ATM given demographic 

information so as to maximize profit and usability. 1 research paper.

(Above papers are in submitted/drafting phase)
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