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Introduction

Need for an effective recommendation system which can identify
what the user wants to do and needs to do.

What the user wants to do:

Does the user like what he is doing?
Does the user want to do what he did the last time?
Does the user want to do something new that he never did
before?

What the user needs to do:

Get aid for job-related work.
Function of user accessing the system - e.g. technical or sales.
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Introduction - Recommender Systems

Types of recommender systems:

Frequency-based

Remembers historical visits.
Does not consider the content of the page.

Content-based

Observe usefulness of a page.
Concept of relevance score is involved.
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Introduction - Novelty

Our system:

Combines both aspects: frequency and content.

Identify user intent.
Rank the content.
Take historical browsing into account.
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Problem Definition

Business Intelligence tasks:

User has to go through multiple reports (pages).

There is usually an end goal or a target (report/page) in
mind.

We define this as the intent of the user.
Very difficult to solve.

New users find it hard to comprehend the complex system of
reports.

Historical information for such users is low.
Collaborative/group-based approach makes sense.
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Problem Definition

Our system addresses these questions:

Predict user intent which is the end goal (report/page) in our
scenario, from context and frequency.

Determine the right content, data and representation based
on the type and expertise of the user.

Find the most suitable recommendation scoring system.

The terms “report”, “node” and “page” are used interchangeably in both the paper and these slides.
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System Design - Workflow

Analyse users
and report data

Build User
Navigation Graphs

Construct
Context tensor

Tensor factorization
and

Kalman Filtering

Ranking of
latent factors

Generate Top-k
recommendations

Display results
to user

Receive feedback
from user
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User Navigation Graph
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User Navigation Graph

Graph description

Nodes (u and v) -
Unique reports seen by
the user.

Edge Weights (Wuv ) -
Probability that the user
goes from node u to
node v .

u

v

Mv

Wuv
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User Navigation Graph

Attributes of each node

Unique ID, Content
information

Mass (Mv ): Fraction of
total time spent on a
node (value between 0
and 1)

u

v

Mv

Wuv
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Target Nodes

Target: 0 or 1

Target = 1 implies possible intent node.

High in-degree nodes
Domain knowledge gained by discussing with users
Specific or important reports
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Contextual Input
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Contextual Input

Two kinds of reports seen by users:
1 Time series

Aggregate Value
Maximum and minimum value of the time series
Location of maximum and minimum observation
Longest positive and negative runs
Length of time series
Average absolute change in consecutive

2 Histograms

Aggregate Value
Rest of the 5 values set to 0
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Context Vector & Context Matrix

For a given user we have a set of different dimension elements
for which a metric is calculated. The cardinality of this set for
each metric m is denoted as dm.

The context vector is of size Nu = 6× Du, where
Du =

∑Mu
m=1 dm, and Mu is the cardinality of the set of all

metrics seen by the user.

The aggregation of many such context vectors over the
number of reports seen forms the context matrix.

The dimension of the context matrix is hence Nu × T , where
Nu signifies the context variables which varies from user to
user and T signifies the number of reports seen.
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Context Tensor

The activity of the users are analyzed and consequently the
users are clustered into 4 categories depending on their
exposure and competence level of using the tool using
k-means clustering algorithm.

We form the context tensor consisting of context matrices of
U users from the same cluster.

The dimension of the 3-way tensor thus formed is:
Nu × T × U.
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Context Model - Tensor Factorization

Since the tensor is highly sparse and the number of context
features varies from user to user, PARAFAC2 tensor
decomposition is used to obtain latent factors for each report
seen by the user.

Equivalent to solving this optimization problem:

(F̃, Λ̃u)u=1,2,...|U| = min
F,Λu

|U|∑
u=1

||Xu − ΛuF||2F
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Context Model - Tensor Factorization

Xu - context panel of the uth user

Gu - orthonormal matrix

H - matrix invariant to u

Su - diagonal matrix

Λu - factor loading matrix

F - matrix containing the collaborative latent factors at T
time instances.
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Context Model - Tensor Factorization

Nu,T - previously described

R - optimally chosen so that latent factors evolve faster.
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Context Model - Kalman Filtering

Kalman Filter is used to enforce the dynamics and sequential
correlations in the latent factors. This enables real-time (fast)
processing by rapidly evolving the latent factors.

xut = Λuft + ζut

f̃t = Au f̂t−1 + ωu
t

f̂t = f̃t + Ku
t (xut − Âf̃t)

xut - tth column of Xu, ft - tth column of F

Ku
t - Kalman gain (involves apriori error covariance matrices)

Au - transition matrix (R × R)

Λu - factor loading matrix (Nu × R)

ζut ,ω
u
t - mutually independent Gaussian random variables

with known positive definite covariance matrices
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Context Model
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Ranking of Latent Factors

Based on the training data:

Set R1 = latent factors fi such that the user eventually ends
up at target node I in the session.

Set R2 = latent factors fj such that the user does not
eventually end up at target node I in the session.

We define the ranking function g(I , fi ):

g(I , fi ) =

{
1, fi ∈ R1,

0, fi ∈ R2.

We also define a set P:

P = {(i , j) : fi ∈ R1, fj ∈ R2}



Introduction Problem Definition System Design Experiments Conclusion

Ranking of Latent Factors

Based on the training data:

Set R1 = latent factors fi such that the user eventually ends
up at target node I in the session.

Set R2 = latent factors fj such that the user does not
eventually end up at target node I in the session.

We define the ranking function g(I , fi ):

g(I , fi ) =

{
1, fi ∈ R1,

0, fi ∈ R2.

We also define a set P:

P = {(i , j) : fi ∈ R1, fj ∈ R2}



Introduction Problem Definition System Design Experiments Conclusion

Ranking of Latent Factors

Based on the training data:

Set R1 = latent factors fi such that the user eventually ends
up at target node I in the session.

Set R2 = latent factors fj such that the user does not
eventually end up at target node I in the session.

We define the ranking function g(I , fi ):

g(I , fi ) =

{
1, fi ∈ R1,

0, fi ∈ R2.

We also define a set P:

P = {(i , j) : fi ∈ R1, fj ∈ R2}



Introduction Problem Definition System Design Experiments Conclusion

Ranking of latent factors - RankSVM

Objective of RankSVM: Learn the ranking function g(I , fi )
such that g(I , fi ) > g(I , fj).

Thus, g(I , fi ) can be defined as:

g(I , fi ) = < −→w , fi >

Large margin approach → optimization problem:

min−→w ,εij≥0
< −→w ,−→w > +λ

∑
ij

εij

s.t. ∀(i , j) ∈ P, < −→w , fi > ≥ < −→w , fj > +1− εij

λ > 0 determines the trade-off between margin maximization
and error minimization
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Ranking of Latent Factors - Intent Score

Once optimal −→w has been learned they can be used to induce
ranking of new latent factors for each intent.

−→w ·
−→
f = distance between the training point and plane

separating positive training and negative training points.

Latent factors normalized to have norm 1.

For every test data, we calculate the latent factor (
−→
f ) for the

report seen and take its dot product with the weights for each
intent to get the intent score (S), normalized to be between 0
and 1:

SI (
−→
f ) =

(4 +−→wI ·
−→
f )

8
(1)
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Recommendation Scoring
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Recommendation Scoring

Kuv = (αv ×Wuv × Rv ) + (βv ×Mv ) (2)

Wuv = Historical probability of user going from node u to
node v .

Rv = Relevance score of the recommendable node v .

Mv = Fraction of time spent on node v .

αv , βv = Feedback factors (initialized to 1.0)
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Recommendation Scoring - Rv

Node v has path to
target nodes (I1, . . . , Ik).

R1, . . . ,Rk are the intent
scores.

D1, . . . ,Dk are the
probabilistic Dijkstra
distances to the
respective target nodes
from node v .

u

v

Mv

Wuv
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Recommendation Scoring - Rv

Kuv = (αv ×Wuv × Rv ) + (βv ×Mv )

Rv = f (S ,D), where S are the intent scores and D is the the
probabilistic distance from the node v to the set of target
(intent) nodes.

Max-IxD: Maximum of (intent scores × distance to target
node) → Rv = max(R1 × D1, . . . ,Rk × Dk)
Sum-IxD: Dot product between intent score and distances of
node to those intents → Rv =

∑k
i=1 Ri × Di

Max-I: Maximum of intent scores → Rv = max(R1, . . . ,Rk)

Sum-I: Sum of intent scores (proposed) → Rv =
∑k

i=1 Ri
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Group-based Recommendation

For providing recommendations to user u, use the graphs of
user u as well as other users.

Clustered all users according to past activity: “experienced”
and “new” users.

For “new” users, graphs of “experienced” users were
considered.

Rv sourced from the “new” (current) user, all other
parameters sourced from the “experienced” user.
Scores of only “novel” nodes were considered (nodes not
present in the current user’s graph).
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Feedback
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Displaying Recommendations

Ranking recommendations

1 Kuv (Descending)

2 Prefer collaborative

3 Rv (Descending)

4 Wuv (Descending)

5 Mv (Descending)

Maximum 10
recommendations shown

Color coded to show
system’s confidence

* Proprietary material has been redacted in the image
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Feedback (Idea)

Four types of feedback:

Explicit Feedback: User interacted with the recommendations
list.

Positive feedback: User clicked on a recommendation.
Negative feedback: User clicked ’×’ (close) on a
recommendation.

Implicit Feedback: User did not interact with any of the
recommended items.

Positive feedback: But user navigated to a page which was
recommended.
Negative feedback: And user did not navigate to any of the
recommended pages.

Feedback leads to changes in the Wuv ,Mv , αv , βv values.
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Experiments

10 days worth of real-world hit data.

Each hit → page access.

Data was sessionized based on the access timestamps.

Training: 70% (first 7 days)

Testing: 30% (last 3 days)
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Baselines

Four baselines:

1 Frequency: Recommendation based upon the probabilistic
graphical model i.e. based upon edge weights (Wuv ) in the
user navigation graph.

2 Mass (Mv ): Recommendation based upon the average time
spent on the reports seen.

3 Context: Recommendation based upon intent scores obtained
from the current context of the user.

4 Tensor Factorization: Recommendation based upon
obtaining latent factors only from PARAFAC2 tensor
decomposition (without Kalman Filter regularization).
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Metrics

Four metrics:

1 NDCG (Normalized Discounted Cumulative Gain)

2 Precision@k

3 Recall@k

4 w-AUC (weighted average Area Under the Curve)
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Results

Table: Comparison of proposed system with baselines & different Rv

Method NDCG Precision Recall w-AUC
Mass 0.4297 0.0885 0.6181 0.5867

Frequency 0.4744 0.0853 0.5866 0.5866

Context Based 0.5228 0.1003 0.6730 0.7226

PARAFAC2 Model 0.5470 0.0987 0.6343 0.6250

Max-IxD 0.4908 0.1006 0.6753 0.6858

Dot-IxD 0.5274 0.1021 0.6911 0.7165

Max-I 0.4736 0.0969 0.6390 0.6555

Sum-I (proposed) 0.5706 0.1006 0.6753 0.7239
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Future Work

Changing training pattern (alternating days, interleaving etc.)

Optimizing feedback factors

Trying the system on other kinds of datasets

Implementing optimizations to tensor factorization (the most
computationally heavy aspect of this system)

Using qualitative domain knowledge to inform user activity
paths thereby enhancing the estimation of user intent
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Conclusion

Cycle completed!

Analyse users
and report data

Build User
Navigation Graphs

Construct
Context tensor

Tensor factorization
and

Kalman Filtering

Ranking of
latent factors

Generate Top-k
recommendations

Display results
to user

Receive feedback
from user
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Thank You!


	Introduction
	Problem Definition
	System Design
	User Navigation Graph
	Context Model
	Ranking of Latent Factors
	Recommendation Scoring
	Group-based Recommendation
	Feedback

	Experiments
	Dataset
	Baselines
	Metrics
	Results

	Conclusion

