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ABSTRACT
Assessing infection spread accurately to prepare effectivemitigation
strategies and develop treatment schedules is an important problem.
Currently, health workers are interested in receiving accountable
data in the shortest time possible to minimize the infection spread
in the community. However, collecting data about the health sta-
tus of people by considering relevant health data such as doctor
visits takes time and it results in a gap between the infection burst
and protection actions. In this paper, we visualized how contact
networks may react to the introduction of infections and identified
correlations between predicted health states and actual data using
social media data. We first developed an SEIRS disease model which
is reasonably accurate in performing realistic disease simulation.
Using this realistic disease model, we optimized the disease pa-
rameters using historical training data from two social media sites
Twitter and Flicker. Then we predicted health states of individuals
and compared the results with the online activity or actual regional
health information. We then evaluated the model on Los Angeles
network and attempted to identify the key reasons behind an area
being more prone to a disease. We considered influenza and used
our model to perform evaluations on the 2018 flu season.
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1 INTRODUCTION
Infectious diseases are a leading cause of death worldwide, par-
ticularly in low income countries. According to a study [], three
infectious diseases were ranked in the top ten causes of death
worldwide in 2016. Numerous studies have been conducted on
assessing infection (contagion) states to analyze spread, prepare
mitigation strategies and develop treatment schedules. Such studies
are focused primarily on currently active (in the contact network)
infectious diseases, e.g. influenza, tuberculosis. In this paper, we
visualize how contact networks may react to introduction of infec-
tions and identify correlations between predicted health states and
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actual data. Our goal is to model the spread of diseases using math-
ematics to provide information for health workers about the levels
of vaccination needed to protect a population. This graphic shows
that when enough members of the population are immunized, they
act as buffers against the spread of the infection to non-immunized
people. Transmission of an infectious disease may occur through
several pathways. However, for the purpose of this study, the di-
rect contact of susceptible individuals with an infected one will be
considered as the main transmission medium.

It is essential to model the spreading of infectious diseases on
networks since it helps us to understand the spreading pattern of
infectious diseases. It can help to decide whether a targeted vaccina-
tion program or quarantine is going to work. It also contributes to
distinguish forces behind epidemic genesis due to the transmission
of the infection which can enable us to design more effective pre-
vention strategies. Moreover, there are not many infectious disease
spreading models which build upon social networks with the rich
context. By summarizing the disease-related online activity, we can
further evaluate the performance of the proposed model.

The remainder of the paper is organized as follows. Section 2
summarizes the related work and background knowledge about
health data. Section 3 introduces our approach and discusses each
step in detail. In Section 4 we present our experimental results
and discuss our datasets and networks. We conclude the paper by
identifying future research directions in Section 5.

2 RELATEDWORK & BACKGROUND
Several studies have been done on disease surveillance. Charles-
Smith et al. [3] recommends identifying opportunities that enable
public health professionals to integrate social media analytics into
disease surveillance and outbreak management practice, which is
precisely what this paper is seeking to work towards. Christakis
and Fowler [4] found that social network analysis can predict flu
outbreaks earlier than traditional tracking methods. Freifeld et
al. [5] developed a system which is similar to what we plan to
build. However, they considered only textual input and did not
overlay disease simulations with actual activity to gather additional
insights. Finally, Carroll et al. [2] called for the need of using data
from different sources to gather public health insights – which this
paper seeks to achieve.

3 PROBLEM SETUP
In this section, we first introduce notation for our problem. An
individual can be in one of the following health states: S means that
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Figure 1: Overview of our approach

the individual is susceptible to disease (healthy), E means that the
individual has been exposed and has latent disease, and I means
that the individual is infected, and R means that the individual has
permanently recovered (or immunized) from the disease.

3.1 Disease Model and Network
Disease Model: We adopt a SEIRS model [9] for modeling the
disease dynamics. Tuberculosis and many other infectious diseases
follow a SEIRS pattern, where treated individuals can relapse or
become reinfected. The disease dynamics are therefore given by:

Susceptible (S)
α−→ Exposed (E)

Exposed (E)
β
−→ Infected (I )

Infected (I )
c−→ Recovered (R)

Recovered (R)
γ
−→ Susceptible (S)

In the context of a graph of individuals, α is the edge-wise fixed
probability of a susceptible (S) individual (node) being exposed (E)
to the disease from an infected (I ) neighbor, β is the fixed probability
of an exposed (E) individual (node) becoming infected (I ), c is the
probability of an infected (I ) individual (node) voluntarily seeking
and successfully completing treatment (R), and γ is the probability
of a cured individual returning to the susceptible S stage.We assume
that the treatment takes place in one time period, where a period
represents the duration needed for a complete treatment regimen (∼
half a year for TB). Here, α can be considered to be correlated to the
infectiousness of a disease since that is the triggering probability
of individuals converting from S to E state. Similarly, β can be
considered as a proxy to the potency of the contagion, i.e. the
ability of the contagion to develop into a full-blown infection.

Network Model: Individuals are part of a contact network, and
infection spreads via the edges in the network. There are n indi-
viduals and N (i) denotes neighbors of individual i in the network.
The network structure (graph) is known from the beginning (t = 0).
Each individual (node) in the network is in one of the health states
{S,E, I ,R}. Let sti denote the state of individual i at time t . At t = 0,
all nodes are deemed to be in the S (healthy) state. At t = 0+, k% of
the nodes are infected with the contagion.

Figure 2: Flu outbreak in LA area

The actual probability of an individual undergoing a change in
the health state is given by:

T =

S E I R


S qj 1 − qj 0 0
E 0 1 − β β 0
I 0 0 1 − c c
R γ 0 0 1 − γ

,

and qj = (1 − α) | {k ∈N (j) | s tk=I } |

The rows denote the from state and the columns denote the to state.
The transition probabilities follow the disease dynamics described
earlier. In particular, qj captures the probability that node j does not
become exposed from his infected neighbors {k ∈ N (j) | stk = I }.
We assume E individuals do not seek treatment voluntarily since
their disease is latent. For model simplicity, we assume S individuals
cannot directly transition directly to I or R state. This is not an
extreme assumption for many diseases, where the overall transition
durations can be much longer than the round length. This model is
inspired from the model described by Bhattacharya et al. [1].

3.2 Visualization
In this section, we visualize what the actual disease progression
looks in the data that we have. Therefore; given a set of disease
parameters, we observe how the actual disease progression looks
in a particular location.

The necessity for visualization is due to the different goals of
studies that result in various interpretations of the data. For the
scope of this work, we do not try to provide suggestions for deci-
sions, but provide a method to visualize forecasting that will aid
decision makers’ in actionable results.

The visualization will provide information about where the out-
breaks are happening in a way that will assist a decision maker
to focus resources in high risk areas. Forecasting will determine
where new outbreaks are more likely to happen.

The progression can vary drastically with respect to the parame-
ters. Figure 2 visualize flu out breaks for the following parameters:
α = 0.01, β = 0.1, c = 0.3, γ = 0.5. This figure shows only the
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progression of only the infected nodes. The idea is to optimize
the parameters of the disease model to simulate the progression
to the actual disease spread, collected from activity data. So, our
goal is to achieve a visualization which is as close to the actual
disease progression as possible. As an example, we can predict the
flu season this year based on what it looked like in past years and
then optimize the α , β , c, γ values to the values which most closely
mimic flu progression.

3.3 Optimization and Prediction
The goal in in this phase is to find the optimal values for our disease
model parameters in order to predict the health states of the indi-
viduals in a population. To achieve this goal, we introduced three
main approaches which are discussed in the following sections.

3.3.1 Grid Search. The traditional way of performing optimization
is grid search which is an exhaustive searching through the parame-
ters space of a learning algorithm with respect to an error function.
Then the fitted model should be evaluated which is mostly done by
cross-validation. We define the scope and the initial values for the
parameters in this model and then fit the model using the available
data from ground truth and social media.

We perform the grid search within the disease parameters space
and check which values conform closest to the ground truth. We
use a loss function to measure each candidate model distance to
the ground truth.

3.3.2 Deep Learning. Deep neural networks have shown promis-
ing results for various clinical prediction tasks such as diagnosis,
mortality prediction, predicting duration of stay in hospital [6][8].
Therefore, we leverage deep learning for training our model and
predicting the infection spread.

(1) Normal LSTM model: By definition, clinical medical data
consist of multi-variate time series of observations and more
recent data has higher impact on the current status of the
population’s health. In particular, LSTMmodels are designed
for analysis of time series data. In LSTM model, time is con-
sidered as an important feature, which controls the data
in the model. We calculate α , β , c, and γ parameters dis-
tances with the actual data and compare at various accep-
tance thresholds depending on the disease type. The accepted
parameters are reported as the optimal values. However, we
can modify the normal LSTMmodel to improve the accuracy
of our approach.

(2) Staged LSTM+encoder-decoder model: We model each sea-
son/year as a separate LSTM. The output of the (i-1)th LSTM
is fed into an auto-encoder architecture and becomes an
input to the ith LSTM. This architecture can be defined for
each year which means auto-encoder steps can be defined at
season level. Then we can make a matrix of auto-encoders
and LSTMs to model the parameters. The goal of this model
is to incorporate seasonal data and also predict at different
level of granularity.

3.3.3 Transfer Learning. The problem with the previous two mod-
els is that disease parameters are dependent on the network at some
level, whereas they are disease model and they should be network
agnostic. For a single network model, this has no impact on the

prediction and the result. However, the model is not generalizable
to other networks which means complete re-training required for
any new network. It is contradicting with the goal of introducing
Disease models since α , β , c, and γ for a disease should be the same
in every network. Thus, we need to define another method to learn
the true value of these parameters, so that we can simply transfer it
to a new network. The challenge is that it is hard to decouple α , β , c,
γ from the network characteristics. To address this challenge we use
the notion of a two-stage ensemble transfer learning model. First,
we need to abstract the network information to a few distributions.
Then, we can perform some sort of expectation–maximization(EM)
method to extract the true α , β , c, and γ values. Finally, given the α ,
β , c, and γ values, we transfer this disease model to a new network.
Then we incorporate the new network information and predict the
outcome. For example, we transfer flu disease model from Los An-
geles network to San Fransisco network. This process is not trivial
and requires further investigation. The generalization offered by
this model makes the model valuable and practical. We will focus
on this general model in our future work.

4 EXPERIMENTS
To evaluate our proposed model, we considered flu infection spread
in Los Angeles. Our goal is to predict the flu outbreaks in 2018
using previous years data. We used this case as a proof of concept
to show that our model can provide valuable information to health
workers.

4.1 Setup
We implemented the model shown in figure 1. We collected data
from social media which is discussed in details in the next section.
We trained our model for flu disease and optimized the parameters
using LSTM. We compared the results with the with actual 2018 flu
numbers collected from activity data, CDC data and Google trends.

4.2 Datasets
To create realistic contact networks, we collected data from Twitter,
Flickr, and Google trends. The goal of the data collection is to
generate a realistic human network, that is a network of nodes
simulating how, when and where people interact. Therefore, we
can model a virus spread on a realistic network. We also defined a
ground truth of infected individuals to be able to perform parameter
tuning for our model and validating the results.

For the realistic human network we collected geo-tagged tweets
and photos. Total collected location nodes are 526,000 globally out
of which 174,573 are unique from 2011 to 2017.

For our ground truth we use data from Google Trends API using
flu related keywords and geo-location based flu related tweets. That
could include queries like flu symptoms, flu remedies and related
terms.

It has already been validated that Google Trends models after
real flu outbreaks fairly well [7]. We also evaluated how well our
tweet data performs and agrees with Google trends and official
outbreak numbers as reported by data.gov.

For Google trends we collect data every 24 hours and we are
able to get the search results for flu at 30 minute basis. For tweet



DSSS, 2018 Biswarup Bhattacharya, Iordanis Fostiropoulos, Negarsadat Abolhassani, and Qing Dong

data we collected stream data continuously of generic keywords as
well as flu related keywords.

4.3 Results
The predicted values for flu disease model for flu outbreaks in 2018
are: α = 0.15, β = 0.8, c = 0.5, and γ = 0.5. The infection prediction
loss is equal to 7.64 which shows our approach did a fairly well job
in predicting these values.

5 CONCLUSIONS
In this paper, we proposed a new approach to predict infection
spread in a particular location. Our model provides health workers
with valuable information about the health status of people as fast
as possible. It also eliminates the need for collecting information
from different health centers to calculate the infection trend and
locate the high risk areas. Using live data as collected from Twitter
and Google Trends helps in providing forecasting information to de-
cision makers in the shortest time possible. This model is applicable
to all infectious diseases and locations. We evaluated our approach
using LSTM learning on flu spread in Los Angeles area. We created
the realistic human network using Twitter and Flicker data and
applied LSTM on this network. Results showed that our approach
is fast and can predict infection spread with high accuracy. For the
future work, we focus on generalization of our approach to make it
transferable to wide range of networks.
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